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Introduction

Given a connected undirected graph G , a depth-first spanning (DFS)
tree is a rooted spanning tree T of G with the property that for every
edge xy P E pG qzE pT q that is not an edge of T , either x is a
descendant of y with respect to T , or x is an ancestor of y .

The edges E pG qzE pT q are called back edges.

DFS trees have also been called lineal spanning trees
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Introduction
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Introduction

A lineal topology T , or LT for short is a graph G together with a root
vertex r and an r -rooted DFS tree of G , i.e., the triple pG , r ,T q.

This notion corresponds to a point-set topology on E pG q defined by:

T “ tE pG rT
1

sq | T
1

is an r -rooted subtree of the DFS tree pT , rqu

For example, given :

A topology on E pG q
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Applications

Planarity testing and embedding [De Fraysseix, 2008; Hopcroft and
Tarjan, 1974]

It can be used to define the treedepth of a graph [Nešetřil and
de Mendez, 2012]

DFS trees have been used to structure the search space of
backtracking algorithms for solving constraint satisfaction problems
[Freuder and Quinn, 1985]

The problem k-Min-HLT of asking, for a given graph G and a positive
integer k , whether G has an (LT with height h ď k) is NP-complete.
[Fellows et al., 1988]
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Problem Definitions

Input: A connected undirected graph G “ pV ,E q and k P N
Question: Does G admit an LT with ď k leaves?

k-Minimum Leafy Lineal Topology (k-Min-LLT)

Input: A connected undirected graph G “ pV ,E q and k P N
Question: Does G admit an LT with ě k leaves?

k-Maximum Leafy Lineal Topology (k-Max-LLT)

Related to the NP-complete Min Leaf Spanning Tree and Max Leaf
Spanning Tree problems [Garey and Johnson, 1990; Lu and Ravi,
1996].

k-Min-LLT is NP-complete.
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Problem Definitions

We consider:
k-Min-LLT and k-Max-LLT, parameterized by k , and

their dual parameterization:

Input: A connected undirected graph G “ pV ,E q and k P N
Parameter: k
Question: Does G admit an LT with ď n ´ k leaves?

Dual Min LLT

Input: A connected undirected graph G “ pV ,E q and k P N
Parameter: k
Question: Does G admit an LT with ě n ´ k leaves?

Dual Max LLT
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Our Results

The k-Min-LLT problem is para-NP-hard parameterized by k .

We show the following theorem by a parameterized reduction from the
Multicolored Independence Set (MIS) problem.

Theorem

Theorem
Dual Min-LLT and Dual Max-LLT are FPT parameterized by k .
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W[1]-Hardness of k-Max-LLT Parameterized by k

Proof:
We present a parameterized reduction from:

Input: A graph G “ pV ,E q, and f : V Ñ r1, ks with k P N.
Parameter: k
Question: Does G contain a k-colored independent set?

Multicolored Independent Set (MIS)

We assume that each color class Vi , for i P r1, ks, induces a clique.
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W[1]-Hardness of k-Max-LLT Parameterized by k

Proof:
Given an instance pG , kq of MIS.

We construct an instance pG 1, k 1q of k-Max-LLT with k 1 “ k .

pG 1, k 1q can be constructed in polynomial time.

V1 V2 V3 Vk

G
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W[1]-Hardness of k-Max-LLT Parameterized by k

Lemma
G has a k-colored independent set ñ G 1 admits an LT with at least k leaves.

Proof.

Let X “ tx1, ..., xku be a k-colored independent set in G .

A DFS of G 1 that excludes the vertices in X until all the vertices in
V pG 1qzX have been visited yields an LT with the vertices in X as its leaves.
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(G, k = 3)

G 1 and a k-colored independence set X “ tc , e, ju in G
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W[1]-Hardness of k-Max-LLT Parameterized by k

Lemma
G has a k-colored independent set ð G 1 admits an LT with at least k leaves.

Proof.

Suppose that k ě 2, and G 1 admits a DFS tree T 1 with at least k leaves.

Let X “ tx1, ..., xku be the set of leaves of T 1.

Claim 1: Each vertex in X belongs to at most one color class Vi in G .

Claim 2: None of the vertices in X belongs to U “ tu1, . . . , uku.
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FPT Algorithms

Dual Max-LLT and Dual Min-LLT parameterized by k
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Method

We employ the following theorem:

Theorem (Courcelle, 1990)
Given k P N and a fixed monadic second-order logic (MSO) formula ϕ of length ℓ
expressing a graph property, there is an algorithm that takes G with treewidth at
most k as input and decides whether G |ù ϕ in time O

`

f pℓ, kq ¨ n
˘

, for some
computable function f .

We express in MSO1 (a version of MSO) the property of having:

an LT with at most n ´ k leaves

an LT with at least n ´ k leaves.

Plan:

Given a DFS tree T resulting from any DFS of the graph G , T either:

solves the problem trivially, or

yields a bounded path decomposition.
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FPT Algorithm for Dual Max-LLT

Observation
For any given graph G and k P N, if G is a YES-instance of Dual Max-LLT, then
G admits an LT with height at most k .
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FPT Algorithm for Dual Max-LLT

Observation
For any given graph G and k P N, if G is a YES-instance of Dual Max-LLT, then
G admits an LT with height at most k .

Lemma
Given a graph G and k P N, if G admits an LT of height at most k , then the
length of any path in G is at most 2k`1 ´ 2.
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Given a graph G and k P N, if G admits an LT of height at most k , then the
length of any path in G is at most 2k`1 ´ 2.

Algorithm
Let T be a DFS tree of G given by DFS.

If the height h of T is more than 2k`1 ´ 2, then return NO.

Otherwise, use T to construct a path decomposition of G of pathwidth at
most 2k`1 ´ 1.
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FPT Algorithm for Dual Min-LLT

The algorithm is similar to that for Dual Max-LLT
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FPT Algorithm for Dual Min-LLT

The algorithm is similar to that for Dual Max-LLT

Difference:

If the number of leaves of T is at most n ´ k , then return YES.

Otherwise, use T to construct a path decomposition of G of
pathwidth at most k .
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Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k .

§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k .

§ Open problem: Is there a single-exponential time algorithm that
solves the problems explicitly via dynamic programming?

k-Min-HLT (LT with height h ď k) is FPT with respect to k by our
Theorem for Dual Max-LLT.

§ Open problem: Dual Min-HLT (LT with height h ď n ´ k),
parameterized by k.
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We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k .

§ Open problem: Is there a single-exponential time algorithm that
solves the problems explicitly via dynamic programming?

k-Min-HLT (LT with height h ď k) is FPT with respect to k by our
Theorem for Dual Max-LLT.

§ Open problem: Dual Min-HLT (LT with height h ď n ´ k),
parameterized by k .

Thank you!
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