Kernelization for Finding Lineal Topologies (Depth-First Spanning Trees) with Many or Few Leaves

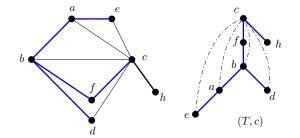
Emmanuel Sam ¹ Benjamin Bergougnoux² Petr A. Golovach¹ Nello Blaser¹

¹Department of Informatics, University of Bergen, Norway

²Institute of Informatics, University of Warsaw, Poland

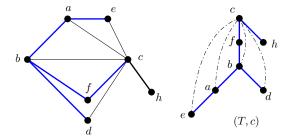
24th International Symposium on Fundamentals of Computation Theory

- Given a connected undirected graph *G*, a *depth-first spanning* (DFS) tree is a rooted spanning tree *T* of *G* with the property that
 - ▶ for every edge $xy \in E(G) \setminus E(T)$, either x is a descendant of y with respect to T, or x is an ancestor of y.

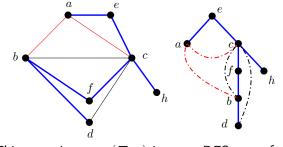


A graph G and a DFS tree (T, c) of G rooted at $c \in V(G)$

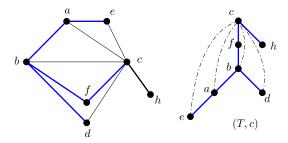
- Given a connected undirected graph *G*, a *depth-first spanning* (DFS) tree is a rooted spanning tree *T* of *G* with the property that
 - ▶ for every edge $xy \in E(G) \setminus E(T)$, either x is a descendant of y with respect to T, or x is an ancestor of y.
- The edges $E(G) \setminus E(T)$ are called *back edges*.



A graph G and a DFS tree (T, c) of G rooted at $c \in V(G)$

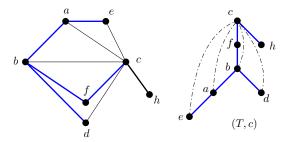


This spanning tree (T, e) is not a DFS tree of G.



A graph G and a DFS tree (T, c) of G rooted at $c \in V(G)$

• A DFS tree is also called *lineal topology* (LT) [Sam et al., 2023]



A graph G and a DFS tree (T, c) of G rooted at $c \in V(G)$

- A DFS tree is also called *lineal topology* (LT) [Sam et al., 2023]
- Leafy lineal topology (LLT): an LT with many or few leaves.

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?

[Sam et al., 2023] Input: A graph G = (V, E) and $k \in \mathbb{N}$. Question: Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?

Min-LLT and Max-LLT are NP-hard

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?

- Min-LLT and Max-LLT are NP-hard
- When parameterized by k

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?

- Min-LLT and Max-LLT are NP-hard
- When parameterized by k
 - Min-LLT is Para-NP-hard.

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?

- Min-LLT and Max-LLT are NP-hard
- When parameterized by k
 - Min-LLT is Para-NP-hard.
 - Max-LLT is W[1]-hard.

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?

- Min-LLT and Max-LLT are NP-hard
- When parameterized by k
 - Min-LLT is Para-NP-hard.
 - Max-LLT is W[1]-hard.

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?
- Min-LLT and Max-LLT are NP-hard
- When parameterized by k
 - Min-LLT is Para-NP-hard.
 - Max-LLT is W[1]-hard.

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?
- Min-LLT and Max-LLT are NP-hard
- When parameterized by k
 - Min-LLT is Para-NP-hard.
 - Max-LLT is W[1]-hard.
- Dual Min-LLT and Dual Max-LLT are **FPT** parameterized by *k*.

Input: A graph G = (V, E) and $k \in \mathbb{N}$. **Question:** Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?

(This work:)

Theorem

Dual Min-LLT and Dual Max-LLT admit kernels with $\mathcal{O}(k^3)$ vertices.

Input: A graph G = (V, E) and $k \in \mathbb{N}$. **Question:** Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?

(This work:)

Theorem

Dual Min-LLT and Dual Max-LLT admit kernels with $\mathcal{O}(k^3)$ vertices.

• Dual Min-LLT and Dual Max-LLT can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.

Input: A graph G = (V, E) and $k \in \mathbb{N}$. **Question:** Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?

(This work:)

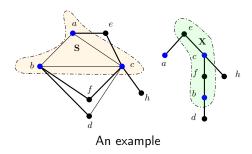
Theorem

Dual Min-LLT and Dual Max-LLT admit kernels with $\mathcal{O}(k^3)$ vertices.

- Dual Min-LLT and Dual Max-LLT can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT parameterized by the vertex cover τ of G admit kernels with $\mathcal{O}(\tau^3)$ vertices.

Lemma (1)

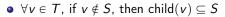
Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

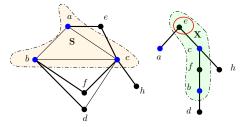


Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

Proof



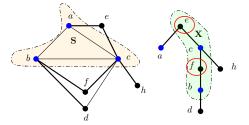


Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

Proof

- $\forall v \in T$, if $v \notin S$, then $child(v) \subseteq S$
- For any distinct internal vertices u and v of T, $child(u) \cap child(v) = \emptyset$.

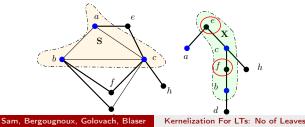


Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

Proof

- $\forall v \in T$, if $v \notin S$, then $child(v) \subseteq S$
- For any distinct internal vertices u and v of T, $child(u) \cap child(v) = \emptyset$.
- Given X\S = {x₁,...,x_t}, child(x₁),..., child(x_t) are pairwise disjoint and non-empty subsets of S.



FCT 2023

Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

Proof

- $\forall v \in T$, if $v \notin S$, then $child(v) \subseteq S$
- For any distinct internal vertices u and v of T, $child(u) \cap child(v) = \emptyset$.
- Given X\S = {x₁,...,x_t}, child(x₁),..., child(x_t) are pairwise disjoint and non-empty subsets of S.
- $|X \setminus S| \leq s$ and $|X| \leq 2s$.

Lemma (2)

There is a polynomial-time algorithm that, given a vertex cover *S* of *G* of size *s*, outputs a graph *G*' with at most $s^2(s-1) + 3s$ vertices such that for every integer $t \ge 0$:

• *G* has a DFS tree with exactly t internal vertices if and only if *G'* has a DFS tree with exactly t internal vertices.

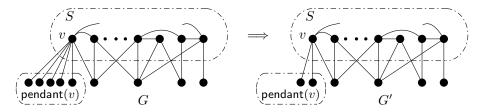
Lemma (2)

There is a polynomial-time algorithm that, given a vertex cover *S* of *G* of size *s*, outputs a graph *G*' with at most $s^2(s-1) + 3s$ vertices such that for every integer $t \ge 0$:

• *G* has a DFS tree with exactly t internal vertices if and only if *G'* has a DFS tree with exactly t internal vertices.

We apply two reduction rules.

Rule 1



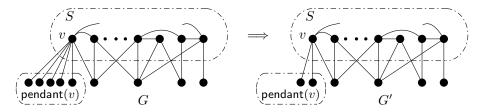
```
foreach v \in S do

| if |pendant(v)| > 2 then

| delete all but two vertices in pendant(v) from G

end

end
```



```
foreach v \in S do

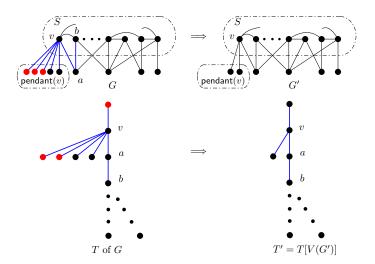
if |pendant(v)| > 2 then

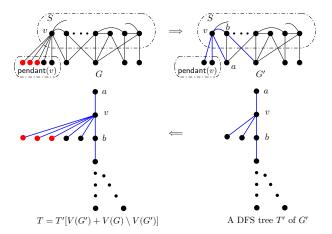
delete all but two vertices in pendant(v) from G

end
```

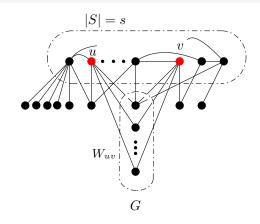
end

Observation: For each $v \in S$, if |pendant(v)| > 2, then at most one vertex of pendant(v) is the root and the rest are leaves of any DFS tree of G.



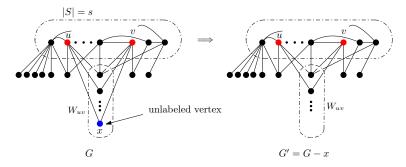


Rule 2



forall pairs $\{u, v\}$ of distinct vertices of S do | Label at most 2s vertices in W_{uv} end

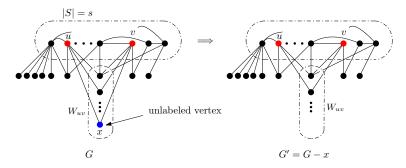
Rule 2



forall pairs {u, v} of distinct vertices of S do
 Label at most 2s vertices in W_{uv}
end

Delete the unlabeled vertices of $V(G) \setminus S$ with at least two neighbors in S.

Rule 2

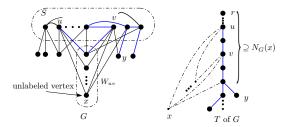


forall pairs $\{u, v\}$ of distinct vertices of S do | Label at most 2s vertices in W_{uv} end Delete the unlabeled vertices of $V(G) \setminus S$ with at least two neighbors in S.

Observation: If $|W_{uv}| \ge 2s + 1$ then any T has at most s internal vertices and at least s + 1 leaves from W_{uv} .

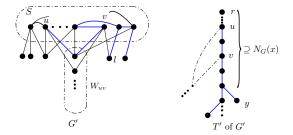
Claim 1:

(i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.



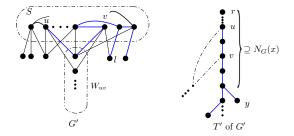
Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T'



Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T' and none of them is a leaf of T'.



Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T' and none of them is a leaf of T'.

Claim 2: If G has a DFS tree with t internal vertices, then G has a DFS tree T with t internal vertices such that x is a leaf of T.

Safeness of Rule 2

Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T' and none of them is a leaf of T'.

Claim 2: If G has a DFS tree with t internal vertices, then G has a DFS tree T with t internal vertices such that x is a leaf of T.

We show that G has a DFS tree with exactly t internal vertices if and only if G' = G - x has a DFS tree with exactly t internal vertices.

Let G' be the graph obtained from G after applying Rule 1 and Rule 2.

Let G' be the graph obtained from G after applying Rule 1 and Rule 2.

- Rule 1 guarantees that G' S has at most 2s pendant vertices.
- Rule 2 guarantees that G' S has at most $2s\binom{s}{2} = s^2(s-1)$ vertices.

Let G' be the graph obtained from G after applying Rule 1 and Rule 2.

- Rule 1 guarantees that G' S has at most 2s pendant vertices.
- Rule 2 guarantees that G' S has at most $2s\binom{s}{2} = s^2(s-1)$ vertices.
- Thus, G' has at most $s^{2}(s-1) + 2s + s = s^{2}(s-1) + 3s$ vertices.

Recall: Dual Min-LLT: Does G admit a DFS tree with $\leq n - k$ leaves

Recall:

- Construct a DFS tree T of G with S internal vertices by DFS.
- If |S| ≥ k return a trivial yes-instance of Dual Min-LLT of constant size and stop.

Recall:

- Construct a DFS tree T of G with S internal vertices by DFS.
- If |S| ≥ k return a trivial yes-instance of Dual Min-LLT of constant size and stop.
- Otherwise, we have a vertex cover S of G of size $s \leq k 1$.

Recall:

- Construct a DFS tree T of G with S internal vertices by DFS.
- If |S| ≥ k return a trivial yes-instance of Dual Min-LLT of constant size and stop.
- Otherwise, we have a vertex cover S of G of size $s \leq k 1$.
- Use S to call the algorithm from Lemma 2, which outputs G' with $\mathcal{O}(k^3)$ vertices.

Recall:

- Construct a DFS tree T of G with S internal vertices by DFS.
- If |S| ≥ k return a trivial yes-instance of Dual Min-LLT of constant size and stop.
- Otherwise, we have a vertex cover S of G of size $s \leq k 1$.
- Use S to call the algorithm from Lemma 2, which outputs G' with $\mathcal{O}(k^3)$ vertices.
- Return (G', k) and stop.

Recall: Dual Max-LLT: Does G admit a DFS tree with $\ge n - k$ leaves

Recall:

- Approximate the vertex cover $\tau(G)$ of G by an inclusion-maximal matching M in G.
- If |M| > k, then return a trivial no-instance of Dual Max-LLT of constant size and stop.

Recall:

- Approximate the vertex cover $\tau(G)$ of G by an inclusion-maximal matching M in G.
- If |M| > k, then return a trivial no-instance of Dual Max-LLT of constant size and stop.
- otherwise, S is the set of endpoints of the edges of M with $|S| \leq 2k$.

Recall:

- Approximate the vertex cover $\tau(G)$ of G by an inclusion-maximal matching M in G.
- If |M| > k, then return a trivial no-instance of Dual Max-LLT of constant size and stop.
- otherwise, S is the set of endpoints of the edges of M with $|S| \leq 2k$.
- Use S to call the algorithm from Lemma 2, outputs G' with $\mathcal{O}(k^3)$ vertices.

Recall:

- Approximate the vertex cover $\tau(G)$ of G by an inclusion-maximal matching M in G.
- If |M| > k, then return a trivial no-instance of Dual Max-LLT of constant size and stop.
- otherwise, S is the set of endpoints of the edges of M with $|S| \leq 2k$.
- Use S to call the algorithm from Lemma 2, outputs G' with $\mathcal{O}(k^3)$ vertices.
- Return (G', k) and stop.

We showed that

• Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?
 - **Open problem:** Are there polynomial kernels for other structural parameterization, such as the *feedback vertex* number of the input graph?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?
 - **Open problem:** Are there polynomial kernels for other structural parameterization, such as the *feedback vertex* number of the input graph?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?
 - **Open problem:** Are there polynomial kernels for other structural parameterization, such as the *feedback vertex* number of the input graph?