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Introduction

Given a connected undirected graph G , a depth-first spanning (DFS)
tree is a rooted spanning tree T of G with the property that

§ for every edge xy P E pG qzE pT q, either x is a descendant of y with
respect to T , or x is an ancestor of y .

The edges E pG qzE pT q are called back edges.
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A graph G and a DFS tree pT , cq of G rooted at c P V pG q
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This spanning tree pT , eq is not a DFS tree of G .
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A DFS tree is also called lineal topology (LT) [Sam et al., 2023]

Leafy lineal topology (LLT): an LT with many or few leaves.
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Computing a Leafy Lineal Topology (LLT)

[Sam et al., 2023]
Input: A graph G “ pV ,E q and k P N.
Question: Does G admit an DFS Tree with:

ď k leaves (Min-LLT)?
ě k leaves (Max-LLT)?

ď n ´ k leaves (Dual Min-LLT)?
ě n ´ k leaves (Dual Max-LLT)?
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Computing a Leafy Lineal Topology (LLT)

Input: A graph G “ pV ,E q and k P N.
Question: Does G admit an DFS Tree with:

ď k leaves (Min-LLT)?
ě k leaves (Max-LLT)?
ď n ´ k leaves (Dual Min-LLT)?
ě n ´ k leaves (Dual Max-LLT)?�� ��This work:

Theorem
Dual Min-LLT and Dual Max-LLT admit kernels with Opk3q vertices.

Dual Min-LLT and Dual Max-LLT can be solved in kOpkq ¨ nOp1q time.
Min-LLT and Max-LLT parameterized by the vertex cover τ of G
admit kernels with Opτ3q vertices.
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Kernelization

Lemma (1)
Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G
has at most 2s internal vertices, and at most s of these internal vertices are not in
S .

Proof
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An example
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Kernelization

Lemma (1)
Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G
has at most 2s internal vertices, and at most s of these internal vertices are not in
S .

Proof

@v P T , if v R S , then childpvq Ď S
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For any distinct internal vertices u and v of T , childpuq X childpvq “ H.

Given X zS “ tx1, . . . , xtu, childpx1q, . . . , childpxtq are pairwise disjoint and
non-empty subsets of S .

|X zS | ď s and |X | ď 2s.
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Kernelization

Lemma (2)
There is a polynomial-time algorithm that, given a vertex cover S of G of
size s, outputs a graph G 1 with at most s2ps ´ 1q ` 3s vertices such that
for every integer t ě 0:

G has a DFS tree with exactly t internal vertices if and only if G 1 has
a DFS tree with exactly t internal vertices.
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size s, outputs a graph G 1 with at most s2ps ´ 1q ` 3s vertices such that
for every integer t ě 0:

G has a DFS tree with exactly t internal vertices if and only if G 1 has
a DFS tree with exactly t internal vertices.

We apply two reduction rules.
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Rule 1

S

v

pendant(v) G

S

v

pendant(v) G′

=⇒

foreach v P S do
if |pendantpvq| ą 2 then

delete all but two vertices in pendantpvq from G
end

end
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Safeness of Rule 1

S

v

pendant(v) G

S

v

pendant(v) G′

=⇒

foreach v P S do
if |pendantpvq| ą 2 then

delete all but two vertices in pendantpvq from G
end

end
Observation: For each v P S , if |pendantpvq| ą 2, then at most one vertex
of pendantpvq is the root and the rest are leaves of any DFS tree of G .
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Safeness of Rule 1
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T ′ = T [V (G′)]

=⇒
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Safeness of Rule 1
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pendant(v) G
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A DFS tree T ′ of G′

⇐=
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T = T ′[V (G′) + V (G) \ V (G′)]
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Rule 2
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Rule 2

v

Wuv

u

G

|S| = s

forall pairs tu, vu of distinct vertices of S do
Label at most 2s vertices in Wuv

end
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Rule 2

v

Wuv

u

G

unlabeled vertex

x

v

Wuv

u

G′ = G− x

=⇒

|S| = s

forall pairs tu, vu of distinct vertices of S do
Label at most 2s vertices in Wuv

end
Delete the unlabeled vertices of V pG qzS with at least two neighbors in S .
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Rule 2

v

Wuv

u

G

unlabeled vertex

x

v

Wuv

u

G′ = G− x

=⇒

|S| = s

forall pairs tu, vu of distinct vertices of S do
Label at most 2s vertices in Wuv

end
Delete the unlabeled vertices of V pG qzS with at least two neighbors in S .

Observation: If |Wuv | ě 2s ` 1 then any T has at most s internal vertices
and at least s ` 1 leaves from Wuv .
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Safeness of Rule 2

Claim 1:
(i) For any DFS tree T of G , the vertices of NG pxq are vertices of a

root-to-leaf path of T .

(ii) For any DFS tree T 1 of G 1, the vertices of NG pxq are vertices of a
root-to-leaf path of T 1

and none of them is a leaf of T 1.

S
v

Wuv

u

G

unlabeled vertex

x y

v

u

r

⊇ NG(x)}
x

y

T of G
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Safeness of Rule 2
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root-to-leaf path of T .
(ii) For any DFS tree T 1 of G 1, the vertices of NG pxq are vertices of a

root-to-leaf path of T 1 and none of them is a leaf of T 1.
Claim 2: If G has a DFS tree with t internal vertices, then G has a DFS
tree T with t internal vertices such that x is a leaf of T .
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(ii) For any DFS tree T 1 of G 1, the vertices of NG pxq are vertices of a

root-to-leaf path of T 1 and none of them is a leaf of T 1.
Claim 2: If G has a DFS tree with t internal vertices, then G has a DFS
tree T with t internal vertices such that x is a leaf of T .

We show that G has a DFS tree with exactly t internal vertices if and only
if G 1 “ G ´ x has a DFS tree with exactly t internal vertices.
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Kernelization

Let G 1 be the graph obtained from G after applying Rule 1 and Rule 2.
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Kernelization

Let G 1 be the graph obtained from G after applying Rule 1 and Rule 2.
Rule 1 guarantees that G 1 ´ S has at most 2s pendant vertices.
Rule 2 guarantees that G 1 ´ S has at most 2s

`

s
2

˘

“ s2ps ´ 1q vertices.

Thus, G 1 has at most s2ps ´ 1q ` 2s ` s “ s2ps ´ 1q ` 3s vertices.
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Dual Min-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Min-LLT: Does G admit a DFS tree with ď n ´ k leaves

(or ě k
internal vertices)
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Dual Min-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Min-LLT: Does G admit a DFS tree with ď n ´ k leaves (or ě k
internal vertices)

Construct a DFS tree T of G with S internal vertices by DFS.
If |S | ě k return a trivial yes-instance of Dual Min-LLT of constant
size and stop.

Otherwise, we have a vertex cover S of G of size s ď k ´ 1.
Use S to call the algorithm from Lemma 2, which outputs G 1 with
Opk3q vertices.
Return pG 1, kq and stop.

Sam, Bergougnoux, Golovach, Blaser Kernelization For LTs: No of Leaves FCT 2023 9 / 11



Dual Min-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Min-LLT: Does G admit a DFS tree with ď n ´ k leaves (or ě k
internal vertices)

Construct a DFS tree T of G with S internal vertices by DFS.
If |S | ě k return a trivial yes-instance of Dual Min-LLT of constant
size and stop.
Otherwise, we have a vertex cover S of G of size s ď k ´ 1.

Use S to call the algorithm from Lemma 2, which outputs G 1 with
Opk3q vertices.
Return pG 1, kq and stop.

Sam, Bergougnoux, Golovach, Blaser Kernelization For LTs: No of Leaves FCT 2023 9 / 11



Dual Min-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Min-LLT: Does G admit a DFS tree with ď n ´ k leaves (or ě k
internal vertices)

Construct a DFS tree T of G with S internal vertices by DFS.
If |S | ě k return a trivial yes-instance of Dual Min-LLT of constant
size and stop.
Otherwise, we have a vertex cover S of G of size s ď k ´ 1.
Use S to call the algorithm from Lemma 2, which outputs G 1 with
Opk3q vertices.

Return pG 1, kq and stop.

Sam, Bergougnoux, Golovach, Blaser Kernelization For LTs: No of Leaves FCT 2023 9 / 11



Dual Min-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Min-LLT: Does G admit a DFS tree with ď n ´ k leaves (or ě k
internal vertices)

Construct a DFS tree T of G with S internal vertices by DFS.
If |S | ě k return a trivial yes-instance of Dual Min-LLT of constant
size and stop.
Otherwise, we have a vertex cover S of G of size s ď k ´ 1.
Use S to call the algorithm from Lemma 2, which outputs G 1 with
Opk3q vertices.
Return pG 1, kq and stop.

Sam, Bergougnoux, Golovach, Blaser Kernelization For LTs: No of Leaves FCT 2023 9 / 11



Dual Max-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Max-LLT: Does G admit a DFS tree with ě n ´ k leaves

(or ď k
internal vertices)
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Dual Max-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Max-LLT: Does G admit a DFS tree with ě n ´ k leaves (or ď k
internal vertices)

Approximate the vertex cover τpG q of G by an inclusion-maximal
matching M in G .
If |M| ą k , then return a trivial no-instance of Dual Max-LLT of
constant size and stop.

otherwise, S is the set of endpoints of the edges of M with |S | ď 2k .
Use S to call the algorithm from Lemma 2, outputs G 1 with Opk3q

vertices.
Return pG 1, kq and stop.
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Conclusion

We showed that
Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels
with Opk3q vertices and can be solved in kOpkq ¨ nOp1q time.

Min-LLT and Max-LLT admit polynomial kernels with Opτ3q vertices
when parameterized by the vertex cover number τ of the input graph.

§ Open problem: Do these problems have linear kernels?

§ Open problem: Can they be solved by single-exponential
(2Opkq ¨ nOp1q ) FPT algorithms?

§ Open problem: Are there polynomial kernels for other structural
parameterization, such as the feedback vertex number of the input
graph?
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Min-LLT and Max-LLT admit polynomial kernels with Opτ3q vertices
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§ Open problem: Can they be solved by single-exponential
(2Opkq ¨ nOp1q ) FPT algorithms?
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parameterization, such as the feedback vertex number of the input
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Thank you!
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