Kernelization for Finding Lineal Topologies (Depth-First Spanning Trees) with Many or Few Leaves

Emmanuel Sam ¹ Benjamin Bergougnoux² Petr A. Golovach¹ Nello Blaser¹

¹Department of Informatics, University of Bergen, Norway

²Institute of Informatics, University of Warsaw, Poland

Friday Seminar

• Let G be a connected undirected graph.

- Let G be a connected undirected graph.
- A depth-first spanning (DFS) tree of G is a rooted spanning tree T of G with the property that:
 - ▶ for every edge $xy \in E(G) \setminus E(T)$, either x is a descendant of y with respect to T, or x is an ancestor of y.

A graph G and a DFS tree (T, c) of G rooted at $c \in V(G)$

Kernelization For LTs: No of Leaves

- Let G be a connected undirected graph.
- A depth-first spanning (DFS) tree of G is a rooted spanning tree T of G with the property that:
 - ▶ for every edge $xy \in E(G) \setminus E(T)$, either x is a descendant of y with respect to T, or x is an ancestor of y.
- The edges $E(G) \setminus E(T)$ are called *back edges*.

A graph G and a DFS tree (T, c) of G rooted at $c \in V(G)$

Kernelization For LTs: No of Leaves

A spanning tree (T, e) of G that is not a DFS tree.

• A DFS tree is also called *lineal topology* (LT) [Sam et al., 2023]

• A DFS tree is also called *lineal topology* (LT) [Sam et al., 2023]

• A DFS tree is also called *lineal topology* (LT) [Sam et al., 2023] $\mathcal{T} = \left\{ \emptyset, \{ad\}, \{ad, db, ba\}, \\ \{ac\}, \{ad, ac, \}, \\ \{ad, db, ba, ac\} \right\}$

• Leafy lineal topology (LLT): an LT with many or few leaves.

[Sam et al., 2023] Input: A graph G = (V, E) and $k \in \mathbb{N}$. Question: Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?

[Sam et al., 2023] Input: A graph G = (V, E) and $k \in \mathbb{N}$. Question: Does G admit an DFS Tree with:

- $\leq k \text{ leaves (Min-LLT)}?$
- $\geq k$ leaves (Max-LLT)?

• Min-LLT is NP-hard

[Sam et al., 2023] Input: A graph G = (V, E) and $k \in \mathbb{N}$. Question: Does G admit an DFS Tree with:

- $\leq k \text{ leaves (Min-LLT)}?$
- $\geq k$ leaves (Max-LLT)?

• Min-LLT is NP-hard and Para-NP-hard parameterized by k.

[Sam et al., 2023] Input: A graph G = (V, E) and $k \in \mathbb{N}$. Question: Does G admit an DFS Tree with:

- $\leq k \text{ leaves (Min-LLT)}?$
- $\geq k \text{ leaves (Max-LLT)}?$

- Min-LLT is NP-hard and Para-NP-hard parameterized by k.
- Max-LLT is NP-hard and W[1]-hard parameterized by k.

[Sam et al., 2023] Input: A graph G = (V, E) and $k \in \mathbb{N}$. Question: Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k \text{ leaves (Max-LLT)}?$
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?
- Min-LLT is NP-hard and Para-NP-hard parameterized by k.
- Max-LLT is NP-hard and W[1]-hard parameterized by k.

[Sam et al., 2023] Input: A graph G = (V, E) and $k \in \mathbb{N}$. Question: Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?
- Min-LLT is NP-hard and Para-NP-hard parameterized by k.
- Max-LLT is NP-hard and W[1]-hard parameterized by k.
- Dual Min-LLT and Dual Max-LLT are **FPT** parameterized by *k*.

3/12

Input: A graph G = (V, E) and $k \in \mathbb{N}$. **Question:** Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?

This work:)

• Dual Min-LLT and Dual Max-LLT can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.

Input: A graph G = (V, E) and $k \in \mathbb{N}$. **Question:** Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?

This work:

• Dual Min-LLT and Dual Max-LLT can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.

3/12

Theorem

Dual Min-LLT and Dual Max-LLT admit kernels with $\mathcal{O}(k^3)$ vertices.

Input: A graph G = (V, E) and $k \in \mathbb{N}$. **Question:** Does G admit an DFS Tree with:

- $\leq k$ leaves (Min-LLT)?
- $\geq k$ leaves (Max-LLT)?
- $\leq n k$ leaves (Dual Min-LLT)?
- $\geq n k$ leaves (Dual Max-LLT)?

This work:

• Dual Min-LLT and Dual Max-LLT can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.

Theorem

Dual Min-LLT and Dual Max-LLT admit kernels with $\mathcal{O}(k^3)$ vertices.

• Min-LLT and Max-LLT parameterized by the vertex cover τ of G admit kernels with $\mathcal{O}(\tau^3)$ vertices.

Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

- $\forall v \in T$, if $v \notin S$, then $child(v) \subseteq S$
- For any distinct internal vertices u and v of T, $child(u) \cap child(v) = \emptyset$.

Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

- $\forall v \in T$, if $v \notin S$, then $child(v) \subseteq S$
- For any distinct internal vertices u and v of T, $child(u) \cap child(v) = \emptyset$.
- Given X\S = {x₁,...,x_t}, child(x₁),..., child(x_t) are pairwise disjoint and non-empty subsets of S.

Lemma (1)

Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G has at most 2s internal vertices, and at most s of these internal vertices are not in S.

Proof

- $\forall v \in T$, if $v \notin S$, then $child(v) \subseteq S$
- For any distinct internal vertices u and v of T, $child(u) \cap child(v) = \emptyset$.
- Given X\S = {x₁,...,x_t}, child(x₁),..., child(x_t) are pairwise disjoint and non-empty subsets of S.
- $|X \setminus S| \leq s$ and $|X| \leq 2s$.

4/12

Lemma (2)

There is a polynomial-time algorithm that, given a vertex cover *S* of *G* of size *s*, outputs a graph *G*' with at most $s^2(s-1) + 3s$ vertices such that for every integer $t \ge 0$:

• *G* has a DFS tree with exactly t internal vertices if and only if *G'* has a DFS tree with exactly t internal vertices.

Rule 1


```
foreach v \in S do

| if |pendant(v)| > 2 then

| delete all but two vertices in pendant(v) from G

end

end
```


Rule 2


```
forall pairs \{u, v\} of distinct vertices of S do

if |W_{uv}| > 2s then

| Label at most 2s vertices in W_{uv};

else

| Label all vertices in W_{uv}

end

end
```



```
forall pairs \{u, v\} of distinct vertices of S do

if |W_{uv}| > 2s then

| Label at most 2s vertices in W_{uv};

else

| Label all vertices in W_{uv}

end
```

end

Delete the unlabeled vertices of $V(G) \setminus S$ with at least two neighbors in S.

Claim 1:

(i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.

Claim 1:

(i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.

Claim 1:

(i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.

Proof

Kernelization For LTs: No of Leaves

Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T'

Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T' and are (iii) internal vertices of T'.

Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T' and are (iii) internal vertices of T'.

Proof

Kernelization For LTs: No of Leaves

Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T' and are (iii) internal vertices of T'. Proof

Sam, Bergougnoux, Golovach, Blaser

Claim 1:

- (i) For any DFS tree T of G, the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T.
- (ii) For any DFS tree T' of G', the vertices of $N_G(x)$ are vertices of a root-to-leaf path of T' and are (iii) internal vertices of T'.

Proof

Kernelization For LTs: No of Leaves

Claim 2: If G has a DFS tree with t internal vertices, then G has a DFS tree T with t internal vertices such that x is a leaf of T.

Let G' be the graph obtained from G after applying Rule 1 and Rule 2.

Let G' be the graph obtained from G after applying Rule 1 and Rule 2.
Rule 1: G' - S has at most 2s pendant vertices.

• Rule 2: G' - S has at most $2s\binom{s}{2} = s^2(s-1)$ vertices.

Let G' be the graph obtained from G after applying Rule 1 and Rule 2.
Rule 1: G' - S has at most 2s pendant vertices.

- Rule 2: G' S has at most $2s\binom{s}{2} = s^2(s-1)$ vertices.
- Thus, G' has at most $s^2(s-1) + 2s + s = s^2(s-1) + 3s = \mathcal{O}(s^3)$ vertices.

Recall:

Recall:

Dual Min-LLT: Does G admit a DFS tree with $\leq n - k$ leaves (or $\geq k$ internal vertices)

• Let T be any DFS tree of G with S internal vertices.

Recall:

- Let T be any DFS tree of G with S internal vertices.
- If |S| ≥ k return a trivial yes-instance of Dual Min-LLT of constant size and stop.

Recall:

- Let T be any DFS tree of G with S internal vertices.
- If |S| ≥ k return a trivial yes-instance of Dual Min-LLT of constant size and stop.
- Otherwise, use S with $|S| \leq k-1$ to call the algorithm from Lemma 2.

Recall:

- Let T be any DFS tree of G with S internal vertices.
- If |S| ≥ k return a trivial yes-instance of Dual Min-LLT of constant size and stop.
- Otherwise, use S with $|S| \leq k-1$ to call the algorithm from Lemma 2.
- Return (G', k) and stop.

Recall:

Recall:

Dual Max-LLT: Does G admit a DFS tree with $\ge n - k$ leaves (or $\le k$ internal vertices)

• Let M be an inclusion-maximal matching in G.

Recall:

- Let M be an inclusion-maximal matching in G.
- If |M| > k, then return a trivial no-instance of Dual Max-LLT of constant size and stop.

Recall:

- Let M be an inclusion-maximal matching in G.
- If |M| > k, then return a trivial no-instance of Dual Max-LLT of constant size and stop.
- Otherwise, use S with $|S| \leq 2k$ to call the algorithm from Lemma 2.

Recall:

- Let M be an inclusion-maximal matching in G.
- If |M| > k, then return a trivial no-instance of Dual Max-LLT of constant size and stop.
- Otherwise, use S with $|S| \leq 2k$ to call the algorithm from Lemma 2.
- Return (G', k) and stop.

• Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?
 - **Open problem:** Are there polynomial kernels for other structural parameterization, such as the *feedback vertex* number of the input graph?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?
 - **Open problem:** Are there polynomial kernels for other structural parameterization, such as the *feedback vertex* number of the input graph?

- Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels with $\mathcal{O}(k^3)$ vertices and can be solved in $k^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$ time.
- Min-LLT and Max-LLT admit polynomial kernels with $\mathcal{O}(\tau^3)$ vertices when parameterized by the vertex cover number τ of the input graph.
 - Open problem: Do these problems have linear kernels?
 - **Open problem:** Can they be solved by single-exponential $(2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)})$ FPT algorithms?
 - **Open problem:** Are there polynomial kernels for other structural parameterization, such as the *feedback vertex* number of the input graph?

Thank you!