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Introduction

Let G be a connected undirected graph.

A depth-first spanning (DFS) tree of G is a rooted spanning tree T of
G with the property that:

The edges E pG qzE pT q are called back edges.
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A graph G and a DFS tree pT , cq of G rooted at c P V pG q
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A spanning tree pT , eq of G that is not a DFS tree.
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Introduction

A DFS tree is also called lineal topology (LT) [Sam et al., 2023]

Leafy lineal topology (LLT): an LT with many or few leaves.
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∅, {ad}, {ad, db, ba},
{ac}, {ad, ac, },
{ad, db, ba, ac}
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Computing a Leafy Lineal Topology (LLT)

[Sam et al., 2023]
Input: A graph G “ pV ,E q and k P N.
Question: Does G admit an DFS Tree with:

ď k leaves (Min-LLT)?
ě k leaves (Max-LLT)?

ď n ´ k leaves (Dual Min-LLT)?
ě n ´ k leaves (Dual Max-LLT)?
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Computing a Leafy Lineal Topology (LLT)

Input: A graph G “ pV ,E q and k P N.
Question: Does G admit an DFS Tree with:

ď k leaves (Min-LLT)?
ě k leaves (Max-LLT)?
ď n ´ k leaves (Dual Min-LLT)?
ě n ´ k leaves (Dual Max-LLT)?�� ��This work:

Dual Min-LLT and Dual Max-LLT can be solved in kOpkq ¨ nOp1q time.

Min-LLT and Max-LLT parameterized by the vertex cover τ of G
admit kernels with Opτ3q vertices.
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Kernelization

Lemma (1)
Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G
has at most 2s internal vertices, and at most s of these internal vertices are not in
S .

Proof
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An example
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Kernelization

Lemma (1)
Let S be a vertex cover of G of size s. Then, every rooted spanning tree T of G
has at most 2s internal vertices, and at most s of these internal vertices are not in
S .

Proof

@v P T , if v R S , then childpvq Ď S
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For any distinct internal vertices u and v of T , childpuq X childpvq “ H.

Given X zS “ tx1, . . . , xtu, childpx1q, . . . , childpxtq are pairwise disjoint and
non-empty subsets of S .

|X zS | ď s and |X | ď 2s.
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Kernelization

Lemma (2)
There is a polynomial-time algorithm that, given a vertex cover S of G of
size s, outputs a graph G 1 with at most s2ps ´ 1q ` 3s vertices such that
for every integer t ě 0:

G has a DFS tree with exactly t internal vertices if and only if G 1 has
a DFS tree with exactly t internal vertices.
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Rule 1

S

v

pendant(v) G

S

v

pendant(v) G′

=⇒

foreach v P S do
if |pendantpvq| ą 2 then

delete all but two vertices in pendantpvq from G
end

end
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Safeness of Rule 1

S

v

pendant(v) G

S
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pendant(v) G′

=⇒
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T ′ = T [V (G′)]

=⇒
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Safeness of Rule 1
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T = T ′[V (G′) + V (G) \ V (G′)]
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Rule 2
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Rule 2

v

Wuv

u

G

|S| = s

forall pairs tu, vu of distinct vertices of S do
if |Wuv | ą 2s then

Label at most 2s vertices in Wuv ;
else

Label all vertices in Wuv

end
end
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Rule 2

v

Wuv

u

G

unlabeled vertex

x

v

Wuv

u

G′ = G− x

=⇒

|S| = s

forall pairs tu, vu of distinct vertices of S do
if |Wuv | ą 2s then

Label at most 2s vertices in Wuv ;
else

Label all vertices in Wuv

end
end
Delete the unlabeled vertices of V pG qzS with at least two neighbors in S .
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Safeness of Rule 2

Claim 1:
(i) For any DFS tree T of G , the vertices of NG pxq are vertices of a

root-to-leaf path of T .

(ii) For any DFS tree T 1 of G 1, the vertices of NG pxq are vertices of a
root-to-leaf path of T 1

and are (iii) internal vertices of T 1.

S
v
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u

G

unlabeled vertex

x y

v
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r

⊇ NG(x)}
x

y

T of G
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Safeness of Rule 2
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Safeness of Rule 2
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Safeness of Rule 2

Claim 2: If G has a DFS tree with t internal vertices, then G has a DFS
tree T with t internal vertices such that x is a leaf of T .
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Kernelization

Let G 1 be the graph obtained from G after applying Rule 1 and Rule 2.
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Kernelization

Let G 1 be the graph obtained from G after applying Rule 1 and Rule 2.
Rule 1: G 1 ´ S has at most 2s pendant vertices.

Rule 2: G 1 ´ S has at most 2s
`

s
2

˘

“ s2ps ´ 1q vertices.

Thus, G 1 has at most s2ps ´ 1q ` 2s ` s “ s2ps ´ 1q ` 3s “ Ops3q

vertices.
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Dual Min-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Min-LLT: Does G admit a DFS tree with ď n ´ k leaves (or ě k
internal vertices)
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Dual Min-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Min-LLT: Does G admit a DFS tree with ď n ´ k leaves (or ě k
internal vertices)

Let T be any DFS tree of G with S internal vertices.

If |S | ě k return a trivial yes-instance of Dual Min-LLT of constant
size and stop.

Otherwise, use S with |S | ď k ´ 1 to call the algorithm from Lemma 2.

Return pG 1, kq and stop.
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Dual Max-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Max-LLT: Does G admit a DFS tree with ě n ´ k leaves (or ď k
internal vertices)

Sam, Bergougnoux, Golovach, Blaser Kernelization For LTs: No of Leaves Friday Seminar 11 / 12



Dual Max-LLT admits a kernel with Opk3q vertices.

Recall:
Dual Max-LLT: Does G admit a DFS tree with ě n ´ k leaves (or ď k
internal vertices)

Let M be an inclusion-maximal matching in G .

If |M| ą k , then return a trivial no-instance of Dual Max-LLT of
constant size and stop.

Otherwise, use S with |S | ď 2k to call the algorithm from Lemma 2.

Return pG 1, kq and stop.
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If |M| ą k , then return a trivial no-instance of Dual Max-LLT of
constant size and stop.

Otherwise, use S with |S | ď 2k to call the algorithm from Lemma 2.

Return pG 1, kq and stop.
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Conclusion

Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels
with Opk3q vertices and can be solved in kOpkq ¨ nOp1q time.

Min-LLT and Max-LLT admit polynomial kernels with Opτ3q vertices
when parameterized by the vertex cover number τ of the input graph.

§ Open problem: Do these problems have linear kernels?

§ Open problem: Can they be solved by single-exponential
(2Opkq ¨ nOp1q ) FPT algorithms?

§ Open problem: Are there polynomial kernels for other structural
parameterization, such as the feedback vertex number of the input
graph?
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Conclusion

Dual Min-LLT and Dual Max-LLT parameterized by k admit kernels
with Opk3q vertices and can be solved in kOpkq ¨ nOp1q time.

Min-LLT and Max-LLT admit polynomial kernels with Opτ3q vertices
when parameterized by the vertex cover number τ of the input graph.

§ Open problem: Do these problems have linear kernels?

§ Open problem: Can they be solved by single-exponential
(2Opkq ¨ nOp1q ) FPT algorithms?

§ Open problem: Are there polynomial kernels for other structural
parameterization, such as the feedback vertex number of the input
graph?

Thank you!
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