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Introduction

For a given connected undirected graph G, a depth-first spanning
(DFS) tree T of G is a rooted spanning tree with the property that for
every edge xy P EpGq that is not an edge of T , either x is a descendant
of y with respect to T , or x is an ancestor of y.

A DFS tree has also been called a lineal spanning tree

A lineal topology T , or LT for short is a graph G together with a root
vertex r and an r-rooted DFS tree of G, i.e., the triple pG, r, T q.

This notion corresponds to a point-set topology on EpGq defined by:

T “ tEpGrT
1

sq | T
1

is an r-rooted subtree of the DFS tree pT, rqu

For example, given :

T “ tH, tadu, tacu, tad, db, bau, tad, acu, tad, db, ba, acuu.
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Applications

Planarity testing and embedding [De Fraysseix, 2008; Hopcroft and
Tarjan, 1974]

It can be used to define the treedepth of a graph [Nešetřil and
de Mendez, 2012]
DFS trees have been used to structure the search space of
backtracking algorithms for solving constraint satisfaction problems
[Freuder and Quinn, 1985]
The problem of checking, for a given graph G and a positive
integer k, whether G has a DFS tree with height at most k is
NP-complete. [Fellows et al., 1988].
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Problem Definitions

Input: A connected undirected graphG “ pV,Eq and k P N
Question: Does G admit an LT with ď k leaves?

k-Minimum Leafy Lineal Topology (k-Min-LLT)

Input: A connected undirected graphG “ pV,Eq and k P N
Question: Does G admit an LT with ě k leaves?

k-Maximum Leafy Lineal Topology (k-Max-LLT)

Related to the NP-complete Min Leaf Spanning Tree and
Max Leaf Spanning Tree problems [Garey and Johnson, 1990;
Lu and Ravi, 1996].
k-Min-LLT is NP-complete.
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Problem Definitions

We consider:
the k-Min-LLT and k-Max-LLT, parameterized by k, and
their dual parameterization:

Input: A connected undirected graphG “ pV,Eq and k P N
Parameter: k
Question: Does G admit an LT with ď n´ k leaves?

Dual Min LLT

Input: A connected undirected graphG “ pV,Eq and k P N
Parameter: k
Question: Does G admit an LT with ě n´ k leaves?

Dual Max LLT
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Our Results

The k-Min-LLT problem is para-NP-hard parameterized by k.

We show the following theorem by a parameterized reduction from
the Multicolored Independence Set (MIS) problem.

Theorem

Theorem
Dual Min-LLT and Dual Max-LLT are FPT parameterized by k.
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W[1]-Hardness of k-Max-LLT Parameterized by k

Proof:
We present a parameterized reduction from:

Input: A graph G “ pV,Eq, and f : V Ñ r1, ks with k P N.
Parameter: k
Question: Does G contain a k-colored independent set?

Multicolored Independent Set (MIS)

We assume that each color class Vi, for i P r1, ks, induces a clique.
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W[1]-Hardness of k-Max-LLT Parameterized by k

Proof:
Given an instance pG, kq of MIS.

We construct an instance pG1, k1q of k-Max-LLT with k1 “ k.
pG1, k1q can be constructed in polynomial time.

V1 V2 V3 Vk

G
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W[1]-Hardness of k-Max-LLT Parameterized by k

Lemma
G has a k-colored independent set ñ G1 admits an LT with at least k leaves.

Proof.

Let X “ tx1, ..., xku be a k-colored independent set in G.

A DFS of G1 that excludes the vertices in X until all the vertices in
V pG1qzX have been visited yields an LT with the vertices in X as its
leaves.
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l

(G, k = 3)

G1 and a k-colored independence set X “ tc, e, ju in G
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W[1]-Hardness of k-Max-LLT Parameterized by k

Lemma
G has a k-colored independent set ð G1 admits an LT with at least k leaves.

Proof.

Suppose that k ě 2, and G1 admits a DFS tree T 1 with at least k,

let
X “ tx1, ..., xku be the set of leaves of T 1.

Claim 1: Each vertex in X belongs to at most one color class Vi in G.

Claim 2: None of the vertices in X belongs to U “ tu1, . . . , uku.

r = u1

V1

u2

V2

u3

V3

a

b

c

d

e

f

g

h

i

j

k

l

(G, k = 3)

u2

r = u1

a

d

b

h

g

f

u3

i

k

l

j
c

e

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 8 / 18



W[1]-Hardness of k-Max-LLT Parameterized by k

Lemma
G has a k-colored independent set ð G1 admits an LT with at least k leaves.

Proof.

Suppose that k ě 2, and G1 admits a DFS tree T 1 with at least k, let
X “ tx1, ..., xku be the set of leaves of T 1.

Claim 1: Each vertex in X belongs to at most one color class Vi in G.

Claim 2: None of the vertices in X belongs to U “ tu1, . . . , uku.

r = u1

V1

u2

V2

u3

V3

a

b

c

d

e

f

g

h

i

j

k

l

(G, k = 3)

u2

r = u1

a

d

b

h

g

f

u3

i

k

l

j
c

e

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 8 / 18



W[1]-Hardness of k-Max-LLT Parameterized by k

Lemma
G has a k-colored independent set ð G1 admits an LT with at least k leaves.

Proof.

Suppose that k ě 2, and G1 admits a DFS tree T 1 with at least k, let
X “ tx1, ..., xku be the set of leaves of T 1.

Claim 1: Each vertex in X belongs to at most one color class Vi in G.

Claim 2: None of the vertices in X belongs to U “ tu1, . . . , uku.

r = u1

V1

u2

V2

u3

V3

a

b

c

d

e

f

g

h

i

j

k

l

(G, k = 3)

u2

r = u1

a

d

b

h

g

f

u3

i

k

l

j
c

e

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 8 / 18



W[1]-Hardness of k-Max-LLT Parameterized by k

Lemma
G has a k-colored independent set ð G1 admits an LT with at least k leaves.

Proof.

Suppose that k ě 2, and G1 admits a DFS tree T 1 with at least k, let
X “ tx1, ..., xku be the set of leaves of T 1.

Claim 1: Each vertex in X belongs to at most one color class Vi in G.

Claim 2: None of the vertices in X belongs to U “ tu1, . . . , uku.

r = u1

V1

u2

V2

u3

V3

a

b

c

d

e

f

g

h

i

j

k

l

(G, k = 3)

u2

r = u1

a

d

b

h

g

f

u3

i

k

l

j
c

e

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 8 / 18



Preliminaries

To show that Dual Max-LLT and Dual Min-LLT are FPT with respect to
k, we employ the following theorem:

Theorem (Courcelle, 1990)
Given k P N and a fixed MSO2 formula ϕ of length ℓ expressing a graph
property, there is an algorithm that takes G with treewidth at most k as input
and decides whether G |ù ϕ in time O

`

fpℓ, kq ¨ n
˘

, for some computable
function f .
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Given k P N and a fixed MSO2 formula ϕ of length ℓ expressing a graph
property, there is an algorithm that takes G with treewidth at most k as input
and decides whether G |ù ϕ in time O

`

fpℓ, kq ¨ n
˘

, for some computable
function f .

We express the properties of having an LT with at least n´ k leaves and at
most n´ k leaves in the MSO1 variant of monadic second-order logic.

In MSO1:

Variables denote vertices and vertex sets

Predicates adjpu, vq and u P V are used for adjacency and membership
respectively

Quantification is allowed only over vertices and vertex sets.
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MSO Formulations

Plan:

We transform each problem to that of deciding whether the graph G has a
k-sized connected vertex set X 1 such that:

GrX 1s has a DFS tree pTX1 , rq with height h ď k and some additional
properties that enable pTX1 , rq to be extended to a DFS tree of G.
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An LT with Bounded Height

Consider any LT pG, r, T q of height h P N in a given graph G.
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A graph G and an LT pG,T, aq
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An LT with Bounded Height

Consider any LT pG, r, T q of height h P N in a given graph G.

Observation:
The DFS tree pT, rq corresponds to a sequence of subsets U0, . . . , Uh Ď V pGq

such that:
1 U0, . . . , Uh is a partition of V pGq

2 U0 contains only one element r.

3 Every vertex u P Ui has a unique neighbor v P Ui´1@i P r1, hs.
4 For every edge uv of G, u is an ancestor of v in T .
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Consider any LT pG, r, T q of height h P N in a given graph G.

Observation:
The DFS tree pT, rq corresponds to a sequence of subsets U0, . . . , Uh Ď V pGq

such that:

1 U0, . . . , Uh is a partition of V pGq

2 U0 contains only one element r.

3 Every vertex u P Ui has a unique neighbor v P Ui´1@i P r1, hs.

4 For every edge uv of G, u is an ancestor of v in T .

Given pG, kq, a sequence of subsets pU0, . . . , Uhq Ď V pGq with h ď k is called:

tree-partition if it satisfies properties (1) - (3)

LT-partition if it is a tree-partition and satisfies property (4).

.
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MSO1-formula for an LT with Bounded Height

ϕh ” DU0,...,UhĎV lt-partitionpU0, . . . , Uh, V q.
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MSO1-formula for an LT with Bounded Height

ϕh ” DU0,...,UhĎV lt-partitionpU0, . . . , Uh, V q.

lt-partitionpU0, . . . , Uh, V q ” tree-partitionpU0, U1, . . . , Uh, V q

^
`

@u,vPV adjpu, vq ñ

pancestorpu, v, U0, . . . , Uhq

_ ancestorpv, u, U0, . . . , Uhq
˘

.
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lt-partitionpU0, . . . , Uh, V q ” tree-partitionpU0, U1, . . . , Uh, V q

^
`

@u,vPV adjpu, vq ñ

pancestorpu, v, U0, . . . , Uhq

_ ancestorpv, u, U0, . . . , Uhq
˘

.

tree-partitionpU0, U1, . . . , Uh, V q ” partpU0, U1, . . . , Uh, V q

^ rootpU0q

^

h
ľ

i“1

p@vPUi
DuPUi´1

uniqNpv, u, Ui´1qq.
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Characterization of Dual Max-LLT

Consider an LT pG, r, T q witnessing that pG, kq is a YES-instance.
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pG, k “ 10q with n “ 13 and an LT pG,T, aq with 5 leaves
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Characterization of Dual Max-LLT

Observation:
For any subtree pTX1 , rq on a k-sized vertex X 1 set consisting of all the
internal vertices and zero or more leaves of T :

1 X 1 is a connected vertex cover (CVC) of G.

2 pTX1 , rq is a DFS tree of GrX 1s.
3 For every pair of vertices u, v P X 1 that have a common neighbor
y P V pGqzX 1, either u is an ancestor or a descendant of v in pTX1 , rq.
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pG, k “ 10q with n “ 13 and a subtree pTX1 , aq of GrX 1s
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Characterization of Dual Max-LLT

Lemma
A graph G has an LT with at least n´ k leaves if and only if it has a vertex
set X 1 with |X 1| ď k satisfying the following properties:

1 X 1 is a connected vertex cover (CVC)

2 GrX 1s admits an LT partition pU0, ..., Uhq with h ď |X 1| such that, for
any vertex y P V pGqzX 1, if y is adjacent to a pair of vertices u, v P X 1,
then either u is the ancestor of v or v is the ancestor of u in the LT
formed by pU0, . . . , Uhq.

ψk ” DX1ĎV Dx1,...,xkPX1

”

connpX 1, V q ^ vcpX 1, V q

^
ł

iPr2,ks

`

DU0,...,UiĎX1lt-partitionpU0, . . . , Ui, V q

^ p@xPV ´X1 Du,vPX1adjpx, uq ^ adjpx, vqq ñ pancestorpu, v, U0, . . . , Uiq

_ancestorpv, u, U0, . . . , Uiqq
˘

ı

.
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Characterization of Dual Min-LLT

Consider an LT pG, r, T q witnessing that pG, kq is a YES-instance
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Characterization of Dual Min-LLT

Observation:
Let pTX1 , rq be any r-rooted subtree of T induced by a set of internal vertices
X 1 of size k.

1 pTX1 , rq is a DFS tree of GrX 1s.

2 Every leaf of pTX1 , rq is adjacent to a vertex in W “ V pT qzX 1

3 For every W 1 P V pGq such that GrW 1s is a maximal connected subgraph
of G´X 1, there exists some vertex x1 P X 1 such that any vertex x P X 1

that has at least one neighbor in W 1 is an ancestor of x1 in pTX1 , rq.
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Characterization of Dual Min-LLT

Observation:
Let pTX1 , rq be any r-rooted subtree of T induced by a set of internal vertices
X 1 of size k.

1 pTX1 , rq is a DFS tree of GrX 1s.

2 Every leaf of pTX1 , rq is adjacent to a vertex in W “ V pT qzX 1

3 For every W 1 P V pGq such that GrW 1s is a maximal connected subgraph
of G´X 1, there exists some vertex x1 P X 1 such that any vertex x P X 1

that has at least one neighbor in W 1 is an ancestor of x1 in pTX1 , rq.

Lemma
A graph G has an LT with ď n´ k leaves if and only if there exists a k-sized
connected vertex set X 1 such that GrX 1s admits an LT-partition pU0, . . . , Uhq

of height h ď k that satisfies properties (2) and (3).
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MSO1 Formula for Dual Min-LLT

ψk ” DX1ĎV DW“V zX1 Dx1,...,xkPX1

”

connpX 1, V q

^
ł

iPr2,ks

´

DU0,...,UiĎX1lt-partitionpU0, . . . , Ui, X
1, V q

^ p@xPX1leafpx, U0, . . . , Uiq ñ DyPW adjpx, yqq

^
`

@W 1ĎW

`

maxconnpW 1,W, V q ñ
`

Dx1PX1

`

@xiPX1 DwPW 1adjpxi, wq

ñ pancestorpxi, x
1, U0, . . . , Uiqq

˘˘˘˘

¯ı

.
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FPT Algorithm for Dual Max-LLT

Observation
For any given graph G and k P N, if G is a YES-instance of Dual
Max-LLT, then G admits an LT with height at most k.
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FPT Algorithm for Dual Max-LLT

Observation
For any given graph G and k P N, if G is a YES-instance of Dual
Max-LLT, then G admits an LT with height at most k.

Lemma
Given a graph G and k P N, if G admits an LT of height at most k, then the
length of any path in G is at most 2k`1 ´ 2.
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Given a graph G and k P N, if G admits an LT of height at most k, then the
length of any path in G is at most 2k`1 ´ 2.

Theorem
Dual Max-LLT parameterized by k is in FPT.

Proof: Let T be a DFS tree of G given by DFS.

If the height h of T is more than 2k`1 ´ 2, then return NO.

Otherwise, use T to construct a path decomposition of G of pathwidth at
most 2k`1 ´ 1.

Apply Courcelle’s theorem to check whether G is a YES-instance of Dual
Max-LLT
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FPT Algorithm for Dual Min-LLT

Theorem
Dual Min-LLT parameterized by k is in FPT.
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FPT Algorithm for Dual Min-LLT

Theorem
Dual Min-LLT parameterized by k is in FPT.

Proof: Let T be a DFS tree of G given by DFS.

If the number of leaves of T is at most n´ k, then return YES.
Otherwise, use T to construct a path decomposition of G of
pathwidth at most k.
Apply Courcelle’s theorem to check whether G is a YES-instance
of Dual Min-LLT
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Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.

§ Open problem: Is the problem in XP?
We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18



Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.
§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18



Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.
§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18



Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.
§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18



Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.
§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18



Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.
§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18



Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.
§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18



Conclusion

We showed that k-Max-LLT is hard for W[1] parameterized k.
§ Open problem: Is the problem in XP?

We showed that Dual Min-LLT and Dual Max-LLT are FPT
parameterized by k.

§ Open problem: Is constructing an algorithm that explicitly solves
the problems via dynamic programming in single-exponential time
possible?

The problem: "Does G have an LT with height h ď k" is FPT by
our Theorem for Dual Max-LLT.

§ Open problem: What is the PC of the problem of checking whether
G has an LT with height h ď n´ k, parameterized by k?

THANK YOU

Sam, Fellows, Rosamond, Golovach On the PC of LTs: Number of Leaves CIAC 2023 18 / 18


