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Abstract. A lineal topology T = (G, r, T ) of a graph G is an r-rooted
depth-first spanning (DFS) tree T of G. Equivalently, this is a spanning
tree of G such that every edge uv of G is either an edge of T or is
between a vertex u and an ancestor v on the unique path in T from
u to r. We consider the parameterized complexity of finding a lineal
topology that satisfies upper or lower bounds on the number of leaves
of T , parameterized by the bound. This immediately yields four natural
parameterized problems: (i) ≤ k leaves, (ii)≥ k leaves, (iii) ≤ n−k leaves,
and (iv) ≥ n− k leaves, where n = |G|. We show that all four problems
are NP-hard, considered classically. We show that (i) is para-NP-hard,
(ii) is hard for W[1], (iii) is FPT, and (iv) is FPT. Our work is motivated
by possible applications in graph drawing and visualization.
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1 Introduction

For every connected undirected graph G = (V,E) with vertex set V (G) and
edge set E(G), there exists a rooted spanning tree T having the property that
for every edge xy ∈ E(G) that is not an edge of T , either x is a descendant of
y with respect to T , or x is an ancestor of y. Such a tree is called a depth-first
spanning tree (or DFS-tree for short), as one may be computed by depth–first
search (DFS), and the edges of G that are not part of T are referred to as back
edges [21]. It has also been called lineal spanning tree [29], trémaux tree [10], and
normal spanning tree, particularly in the case of infinite graphs [12].

The importance of the properties of such trees in the design of efficient al-
gorithms is evident in the great variety of algorithms that employ DFS to solve
graph-theoretic problems, including finding connected and biconnected compo-
nents of undirected graphs [21], bipartite matching [23], planarity testing [22],
⋆ Supported by Research Council of Norway (NFR, no. 274526 and 314528).
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and checking the connectivity of a graph [15]. In the field of parameterized com-
plexity [7,14], DFS has been instrumental in obtaining fixed-parameter tractable
(FPT ) results by way of treedepth [25] and bounded width tree decompositions
of the given graph [1,16].

In the work reported herein, we refer to the triple (G, r, T ), that is, a graph
G together with a choice of root vertex r and a DFS tree T , as a lineal topology
T , or LT for short. This notion of LT corresponds to a point-set topology on the
set of edges E(G) (equipped with a rooted DFS tree T ), where the open sets
are the sets of edges of the subgraphs induced by rooted subtrees with the same
root r as T . The lineal topologies of G may differ in terms of the properties of
T , such as height and number of leaves. Figure 1 shows one way of representing
an LT as a topological graph or drawing in the plane. Given a graph G and a
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Fig. 1: A given graph G, and two examples of a lineal topology of G, denoted by
T1 and T2. They differ in the height and number of leaves of the DFS tree T .
The leaves are shown as squares. The tree edges are shown in heavy lines, while
the back edges are shown in thin curved lines.

DFS tree (T, r), an embedding of G in the plane so that every pair of edges that
cross is a pair of back edges having at most one crossing point is an instance of
an LT of G called T-embedding [19]. By definition, there exists a T-embedding
of the graph G with no crossings points among the back edges if and only if G is
a planar graph. This is the basis of Hopcroft and Tarjan’s linear time planarity
testing algorithm [22] and other algorithms for planarity testing, embedding,
and Kuratowski subgraph extraction based on de Fraysseix and Rosenstiehl’s
Left-Right characterization of planarity [8,9].

Considering the above-mentioned applications of LT and the interesting out-
comes enabled by the properties of DFS trees, it will be worthwhile to investigate
how their structural properties are related to other properties of graphs, includ-
ing crossing number [20] and bandwidth [3], useful in algorithms for VLSI design
and graph drawing. Then, a complementary study is the complexity of finding
those kinds of lineal topologies. We take the first step in this direction of research
by investigating the complexity of two main classical decision problems, namely
k-Minimum Leafy LT (k-Min-LLT) and k-Maximum Leafy LT (k-Max-
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LLT), which correspond to finding an LT with minimum number of leaves, and
an LT with maximum number of leaves respectively.

Given an undirected graph G, the k-Min-LLT and k-Max-LLT problems
ask whether G has an LT defined by a DFS tree with at most k and at least k
leaves, respectively. One observation that is easy to make is that a Hamiltonian
Path (HP) rooted at one of the end vertices of the path defines LT with one
leaf. Thus, k-Min-LLT is clearly NP-complete because it is a generalization of
the HP problem. To the best of our knowledge, the complexity of k-Max-LLT
has not been previously considered. While there are several results regarding the
complexity of Maximum Leaf Spanning Tree and Minimum Leaf Spanning
Tree in general [2,26,27,28], for DFS trees, the only available complexity results
are due to Fellows et al. [17]. For a given graph G, they considered the difficulty
of finding a DFS tree that satisfies upper or lower bounds on two parameters,
namelymin(G,T ) andmax(G,T ), which stand for the minimum length of a root
to leaf path of the DFS tree T , and the maximum length of such a path respec-
tively. They showed that, for a given graph G and an integer k ≥ 0, the following
problems are NP-complete: min(G,T ) ≤ k, min(G,T ) ≥ k, max(G,T ) ≤ k, and
max(G,T ) ≥ k. It was also shown that, unless P = NP , none of these problems
admits a polynomial-time absolute approximation algorithm.

Consequently, an appropriate framework within which to study these sorts
of problems is parameterized complexity (PC) [14], according to which problems
can be analyzed in terms of other parameters apart from the input size. This leads
to algorithms for which we pay an exponential cost in the parameter, thereby
solving the problem efficiently on instances with small values of the parameter.
For the basics of PC necessary to understand this paper, see Section 2.

We consider a parameterization of k-Min-LLT and k-Max-LLT, where the
parameter k is the size of the solution (number of leaves), and their so-called
“dual” parameterization, namely Dual Min-LLT (Does G have an LT with at
most n − k leaves? ) and Dual Max-LLT (Does G have an LT with at least
n− k leaves? ), where the parameter k is the number of internal vertices. These
four parameterized problems are formally defined in Section 2. We show that
while each parameterized problem and its parametric dual are trivially the same
problem and NP-hard when considered classically, when analyzed in terms of PC,
the tractability outcomes differ, with one being FPT and the other W[1]-hard.

1.1 Our Results

Our first result is the hardness of k-Max-LLT. By a reduction from the Mul-
ticolored Independent Set (MIS) problem, we show that k-Max-LLT is
hard for W[1] parameterized by k. Furthermore, we show that all four problems,
considered classically, are NP-hard, and we show trivially that k-Min-LLT pa-
rameterized k is para-NP-hard. Our main contribution is in showing the existence
of an FPT algorithm for Dual Min-LLT and Dual Max-LLT, parameterized
by k, via an application of Courcelle’s theorem [4,6], which relates the express-
ibility of a graph property using monadic second-order logic to its tractability
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in linear time on graphs with bounded treewidth (or pathwidth). For a formal
definition of this logical language, see Section 2.4.

2 Preliminaries

Unless otherwise specified, a graph G with vertex set V (G) and edge set E(G)
is simple, finite, undirected, and connected. For a graph G, n and m denotes the
number of vertices |V (G)| and the number of edges |E(G)| of G, respectively.
We use uv instead of {u, v} to denote an edge in E(G). For any vertex v ∈ V (G),
the set NG(v) denotes the open neighborhood of v, that is, the set of neighbors
of v in G, and NG[v] = NG(v) ∪ {v} denotes its closed neighborhood in G. We
drop the G in the subscript if the graph is clear from the context. Given any
two graphs G1 = (V1, E1) and G2 = (V2, E2), if V1 ⊆ V2 and E1 ⊆ E2 then G1

is a subgraph of G2, denoted by G1 ⊆ G2. If G1 contains all the edges uv ∈ E2

with u, v ∈ V1, then we say G1 is an induced subgraph of G2, or V1 induces G1

in G2, denoted by G[V1]. If there exists are bijective mapping f : V1 → V2 that
preserves adjacency, that is, uv ∈ E1 if and only of f(u)f(v) ∈ E2, then G1 is
isomorphic to G2 and f is called an isomorphism. If G1 is such that it contains
every vertex of G2, i.e., if V1 = V2 then G1 is a spanning subgraph of G2. Given a
set of vertices X ⊆ V , we express the induced subgraph G[V (G) \X] as G−X.
If X = {x}, we write V (G) \ x instead of V (G) \ {x} and G − x instead of
G− {x}. For any pair of vertices uv ∈ V (G) in a given graph G, we denote any
path from u to v by P (u, v), and any path of length ℓ by P ℓ. A vertex u is said
to be reachable from a vertex v if there is a path P (u, v). Given a graph G, a
set of vertices S ⊆ V (G) is a connected vertex cover (CVC) of G if the subgraph
G[S] induced by S is connected and S is a vertex cover of G, i.e., for every edge
uv ∈ E(G), either u ∈ S or v ∈ S.

2.1 Lineal Topology

Here, we focus on the definitions of the substructures of lineal topologies that
are relevant to our proofs. We refer the reader to [11] for details about basic tree
terminologies such as root, parent, child, ancestor, etc. In all cases, a DFS tree
is simply denoted by T instead of (T, r) if the root is clear from the context.
For any given lineal topology T = (G, r, T ), we denote the height of T , that is,
the maximum number of edges in any leaf-to-root path of T , by h. A leaf of
T is a vertex that has no descendants but is adjacent to one or more ancestors
with respect to T (see Figure 1). We denote by Y and X the set of leaves and
internal vertices of T , respectively. Given a set of vertices S ⊆ V (G), such that
the subgraph G[S] induced by S is connected, we denote the DFS tree of G[S]
rooted at x ∈ S by (TS , x). The set E(T ) and E(B) denote the tree edges and
back edges of T respectively. By definition, the set Y is an independent set ; that
is, no pair of vertices uv ∈ Y are adjacent. This is also true for the set of vertices
Ui ⊆ V (T ) at each level i of T . Given a vertex v, the set Pv denotes the vertices
on the uniquely determined path P (v, r) in T .
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2.2 Parameterized Complexity

Now we review some important concepts of parameterized complexity (PC) rel-
evant to the work reported herein. For more details about PC, we refer the
reader to [7,14]. Let Σ be a fixed, finite alphabet. A parameterized problem is
a language P ⊆ Σ∗ × N. For an instance (x, k) ∈ Σ∗ × N, k ∈ N is called the
parameter. A parameterized problem P is classified as fixed-parameter tractable
(FPT) if there exists an algorithm that answers the question “(x, k) ∈ P?” in
time f(k) · poly(|x|), where f is a computable function f : N → N. Let P and P ′

be two parameterized problems. A parameterized reduction from P to P ′ is an
algorithm that, given an instance (x, k) of P , produces an equivalent instance
(x′, k′) of P ′ such that the following conditions hold:

1. (x, k) is a YES-instance of P if and only if (x′, k′) is a YES-instance of P ′.
2. There exist a computable function f : N → N such that k′ ≤ f(k).
3. The reduction can be completed in time f(k) ·poly(|x|) for some computable

function f .

The W-hierarchy [13] captures the level of the intractability of hard param-
eterized problems. For the purpose of the discussions in this paper, it is enough
to note that a problem that is hard for W [1] cannot be solved in FPT running
time, unless FPT = W [1]. A parameterized problem that is already NP-hard
for some single fixed parameter value k (such as k = 3 for Graph k-Coloring)
is said to be para-NP-hard.

2.3 Problem Definitions

We formally define the parameterized problems studied in this work as follows:

k-Min-LLT
Input: A connected undirected graph G = (V,E).
Parameter: k
Question: Does G admit an LT with ≤ k leaves?

k-Max-LLT
Input: A connected undirected graph G = (V,E)
Parameter: k
Question: Does G have an LT with ≥ k leaves?

Dual Min-LLT
Input: A connected undirected graph G = (V,E) and positive integer k
Parameter: k
Question: Does G admit an LT with ≤ n− k leaves?

Dual Max-LLT
Input: A connected undirected graph G = (V,E) and positive integer k
Parameter: k
Question: Does G have an LT with ≥ n− k leaves?
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Below, we present the definitions of the concepts used in Section 3, to show
that Dual Min-LLT and Dual Max-LLT are FPT with respect to k.

Definition 1 (Treewidth, Pathwidth). A tree decomposition of a given graph
G is a pair (TD, B) where TD is a tree and B is a family of subsets {Bi ⊆ V (G) :
i ∈ V (TD)}, called bags, with each node in TD associated with a bag, satisfying
the following properties: (1)

⋃
i∈V (TD)Bi = V (G), (2) ∀uv∈E(G),∃i ∈ V (TD) :

u ∈ Bi, and v ∈ Bi, and (3) ∀v∈V (G), the set T i
D = {i ∈ V (TD) : v ∈ Bi} gives

rise to a connected subtree of TD.
The width of (TD, B) is max{|Bi| : i ∈ V (TD)} − 1 and the treewidth of

a graph, denoted tw(G), is the minimum width over all tree decompositions of
G. If TD is a path, then (TD, B) is called the path decomposition of G and the
minimum width over all path decompositions of G is its pathwidth, often denoted
by pw(G). For any graph G, it is a fact that tw(G) ≤ pw(G) [25].

2.4 Logic of Graphs

We now introduce the basic definitions and notations of the logic of graphs and
MSO, the logical language with which we specify the properties associated with
Dual Min-LLT and Dual Max-LLT in Section 3. For a thorough discussion
of these topics, we refer the reader to [6,24].

Recall that Second-Order Logic (SO) is an extension of First-Order Logic
(FO) that allows quantification over predicates or relations of arbitrary arity.
Monadic Second-Order Logic (MSO) are SO formulas in which only quantifi-
cation over unary relations (i.e., subsets of the domain) is allowed. To express
graph properties using MSO, a graph G = (V,E) can be represented either as
a logical (or relational) structure ⌊G⌋ whose domain is the vertex set V , with
a binary relation adj on V representing the edges, or as a logical structure ⌈G⌉
whose domain is formed by the disjoint union of V and E, with a binary relation
inc representing the incidence between the vertices and edges of G. There are
two main variants of MSO: MSO1 and MSO2, corresponding to ⌊G⌋ and ⌈G⌉
respectively.

Definition 2 (MSO1 language). The logical expressions or formulas of this
language are built from the following elements:

1. Small variables u, v, x1, . . . , xk for vertices
2. Big variables X,Y, U1, . . . , Uk for sets of vertices.
3. Predicates adj(u, v) and u ∈ V for adjacency and membership respectively,

and “=” equality testing.
4. The logical connectives ∨,∧,¬,⇒
5. ∀x, ∃x for quantification over vertices and ∀U , ∃U for quantification over

vertex sets.

The MSO2 language extends MSO1 with variables denoting edges and subset of
edges, and the predicate inc(x, e) for incidence, and allows quantification over
edges and edge sets.
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For clarity, we use ∀x, ∃x instead of ∀x, ∃x, and ∀U , ∃U instead of ∃U ,
and ∀U . Given a graph G belonging to a class of graphs C and a formula Φ
expressing a graph property in MSO, we denote the statement “Φ is true of the
vertices and the relation of G” by G |= Φ (read as “G models Φ” or “Φ holds on
G”). For a logical language L ∈ {MSO1,MSO2}, we say that a graph property
is L-expressible if there exists a formula (sentence) of L for expressing it. The
theorem below states the consequence of expressing a graph property by an
MSO2 formula.

Lemma 1 (Courcelle’s theorem [4,6]). Assume that ϕ is a fixed MSO2 for-
mula of length ℓ expressing a graph property. Then for any graph G belonging to
a graph class C with treewidth bounded by a fixed positive integer k, there is an
algorithm that takes G and its tree decomposition as input and decides whether
G |= ϕ in time O

(
f(ℓ, k) · n

)
, for some computable function f .

By a theorem similar to Lemma 1, every graph property that is MSO1-expressible
can be decided in linear time on graphs of bounded clique-width, a graph com-
plexity measure that is similar to treewidth [5]. It is worth noting that Lemma
1 also holds for MSO1 formulas because every graph property expressible by an
MSO1 formula is also expressible by an MSO2 formula; but the converse is not
true. For example, the existence of a Hamiltonian path can only be expressed
in MSO2 [6]. Therefore, it is stronger to claim that a given property is MSO1-
expressible. In Section 3.2, we show that the property of having an LT with at
least n− k leaves or at most n− k leaves is MSO1-expressible.

3 Complexity Analysis

In this section, we consider the four natural parameterized problems defined
above. We first show that k-Max-LLT is hard for W[1] parameterized by k.
The reduction in the proof is polynomial and thus the problem is NP-hard.
Besides, we show trivially that k−Min-LLT is para-NP-hard with respect to k.
This is followed by proofs of hardness for Dual Min-LLT and Dual Max-LLT,
considered classically. Moreover, we show that these two problems are FPT with
respect to k. To this end, we construct MSO1 formulas ϕk and φk to express
the property of having an LT with at most n − k leaves and that of having
an LT with at least n − k leaves. Next, we make use of the following facts on
the height of a lineal topology to show the existence of an FPT algorithm for
the two problems. Given a graph G and an integer k ≥ 0, we show, for Dual
Max-LLT, that if the height of the DFS tree T resulting from any DFS of G
is more than 2k+1 − 2, then T witnesses that the answer is NO, otherwise, G
has a path decomposition of width at most 2k+1 − 1. For Dual Min-LLT, we
trivially show that the answer is YES if the number of internal vertices of T is
at least k, otherwise, G has a path decomposition of width at most k.
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3.1 Hardness Results

Theorem 1. k-Max-LLT is W[1]-hard parameterized by k and NP-complete
when considered classically.

Proof. We reduce from the parameterized Multicolored Independent Set
(MIS) problem parameterized by the number of colors. In the MIS problem, we
are given a graph G = (V,E) and a coloring of V with k colors, and the task
is to determine whether G has a k-colored independent set, that is, a k-sized
independent set containing one vertex from each color class. We trivially assume
that each color class induces a clique for our argumentation. This problem is
W[1]-hard with respect to k [7, chapter 13], which implies that it is unlikely that
it can be solved in time f(k) · poly(n) for any computable function f .

Given a positive integer k, let G be an instance of the MIS problem in which
{V1, . . . , Vk} is a partition of the vertex set V (G) such that, for each i ∈ [1, k], Vi
induces a clique and corresponds to a color class. Now we construct an instance
(G′, k) of the k-Max-LLT problem from G by introducing a set of k universal
vertices U = {u1, u2, . . . , uk}, i.e., every ui ∈ U is adjacent to every vertex in
G and in U \ ui. The completed G′ = (V ′, E′) has V ′ = V ∪ U , and E′ =
E(G) ∪ {uiv | ui ∈ U, v ∈ V (G′) \ ui} (see Figure 2). The main idea of this
construction, as will be argued below, is to enable a depth-first traversal ofG that
guarantees an LT with at least k leaves corresponding to a k-sized independent
set in G, if it exists. It is not hard to see that we can construct (G′, k) from
(G, k) in polynomial time. Lemmas 2 and 3 below show that G′ admits an LT
with at least k leaves if and only if G has a k-colored independent set.
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Fig. 2: An example of a reduction from an instance G of MIS, with k-colored
independent set X = {c, e, j}, to an instance G′ of Max-LLT and a DFS of G′

that yields a DFS tree T ′ with {c, e, j} as its leaves.

Lemma 2. If a k-colored independent set exists in G, then G′ admits an LT
with at least k leaves.
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Proof. Suppose that X = {x1, ..., xk} is a k-colored independent set in G. Since
x1 ∈ V1, . . . , xk ∈ Vk with each color class Vi inducing a clique, any depth-first
traversal of G′ that excludes the vertices in X until all the vertices in V (G′) \X
have been visited yields an LT with the vertices in X as its leaves. One way
to achieve this is to start from the vertex u1 ∈ U and visit every vertex in the
corresponding color class V1 except x1. Next, choose u2 ∈ U and explore every
vertex in V2 except x2. Repeat this process sequentially for each ui ∈ U and its
corresponding color class Vi until the last vertex uk ∈ U is reached. Now choose
the vertex xk after exploring every vertex in the set Vk \ {xk}. See Figure 2 for
an illustration of this process. At this point, every edge incident to xk leads to
a vertex already reached by the DFS because X is an independent set. Thus,
xk becomes a leaf in the resulting DFS tree T ′ of G′. If any vertex xi ∈ X is
adjacent to an already visited vertex v ∈ Vk, we backtrack and choose xi from v.
Otherwise, we backtrack to uk ∈ U , as every vertex in X is reachable from this
vertex by construction. Each of the remaining vertices {x1, . . . , xk−1} reached
by DFS becomes a leaf in T ′ because of the same reason as for xk. ⊓⊔

Lemma 3. If an LT with at least k leaves in G′ exists, then there is a k-colored
independent set in G.

Proof. If k = 1 then G is obviously a YES-instance. Suppose that k ≥ 2 and
G′ admits an LT in which X = {x1, x2, ..., xk} are the leaves. Observe that X
is an independent set. Then, based on the following claims, we conclude that X
induces a k-colored independent set in G.

Claim 3.1. Each color class Vi in G′ can contain at most one vertex from X.

Proof. The set of leaves X is an independent set and, by construction, each color
class Vi in G′ is a clique. Therefore, there cannot be any LT of G′ with two or
more leaves from the same color class. ♦

Claim 3.2. None of the vertices in X is from the vertex set U = {u1, . . . , uk}.

Proof. For i ∈ [1, k], if ui is a leaf of T ′, the remaining vertices in V (G′) \ ui
must necessarily be internal vertices of T ′ by construction. Since X contains at
least 2 vertices, it follows that no vertex in U can be in X. ♦

Combining Claims 3.1 and 3.2, we conclude that X is a k-colored independent
set in G.

⊓⊔

Theorem 2. k-Max-LLT is NP-complete.

Proof. k-Max-LLT is clearly in NP. The NP-hardness of the problem follows
from the proof of Theorem 1, because Multicolored Independent Set is
NP-complete [7,20] and the reduction from Multicolored Independent Set
to k-Max-LLT is a polynomial-time reduction.

Theorem 3. k-Min-LLT parameterized by k is para-NP-hard.
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Proof. This follows, trivially, from the fact that k-Min-LLT is NP-hard already
for k = 1, because for this case, k-Min-LLT is equivelent to Hamiltonian Path
which is well-known to be NP-complete [20].

Theorem 4. Dual Min-LLT and Dual Max-LLT, considered classically, are
NP-hard.

Proof. Dual Min-LLT can be restricted to the Hamiltonian Path problem
by allowing only instances in which k = n − 1. Similarly, (G,n − k) is a YES-
instance of k-Max-LLT iff (G, k) is a YES-instance of Dual Max-LLT. ⊓⊔

3.2 MSO Formulations

Recall that a DFS tree T is a tree formed by a set of edges E(T ) with a choice of
a root vertex r, such that every edge not in T connects a pair of vertices that are
related to each other as an ancestor and descendant in T . For any DFS tree T of
a given graph G, the set of vertices Ui at each level i of T is an independent set
of G. Thus, T corresponds to a partition of the vertex set V (G) into a sequence
of independent sets (U0, U1, ..., Uh) with h ∈ N, where the root r is the only
member of U0 and Uh contains the vertex witnessing the height h of T (see
Figure 3a). Based on this observation, we provide the following definition of a
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Fig. 3: (a) Color classes denoting an LT partition (U0, U1, ..., U6) of a graph G
with n = 13, and a representation of the associated LT of G with height h = 6
and number of internal vertices |X| = 8. (b) A CVC X ′ of a graph G, and a
DFS tree T of G formed by a DFS tree (TX′ , a) for G[X ′] and the independent
set V (G−X ′). The internal vertices X of T consist of {a, b, c, d, e, f, i, j}. Thus
|X| ≤ |X ′|. (c) A CVC X ′ of a graph G such that G[X ′] does not admit a DFS
tree TX′ which extends to a DFS tree T of G.

DFS tree with bounded height, which allows us to express the properties “G has
an LT with at least n− k leaves” and “G has an LT with at most n− k leaves”
in MSO1.

Definition 3. Let G be a graph and h a positive integer. A tree-partition of G
of height h is a sequence (U0, . . . , Uh) with U0, . . . , Uh ⊆ V (G) such that:
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1. (U0, U1, . . . , Uh) is a partition of V (G).
2. U0 contains only one element r.
3. Every vertex u ∈ Ui has a unique neighbor v ∈ Ui−1 for all i ∈ [1, h].

The tree associated with the tree-partition (U0, . . . , Uh) is the rooted spanning
tree T of G with root r and edge set E(T ) = {uv : uv ∈ E(G), u ∈ Ui, v ∈ Ui−1

for all i ∈ [1, h]}. We say that the tree-partition (U0, . . . , Uh) is an LT-partition
of G if:

4. For every edge uv of G, u is an ancestor of v in T or v is an ancestor of u
in T .

Lemma 4. For every h ∈ N , a graph G = (V,E) has an LT with height h if
and only if G admits an LT-partition (U0, U1, ..., Uh).

Proof. Let T be the spanning tree of G associated with (U0, U1, ..., Uh). Prop-
erty 4 of Definition 3 ensure that every uv ∈ E \E(T ) is a back edge, and, thus,
for all i ∈ [0, h], Ui is an independent set. This gives us an LT with height h.

Conversely, suppose we have an LT of G defined by a DFS tree T with height
h. Then it is easy to see that the root and the vertices at each level of T constitute
an LT-partition (U0, U1, ..., Uh). ⊓⊔

Dual Max-LLT. Let G be a graph and k ∈ N. If k = 1 then G is a YES-
instance of Dual Max-LLT if and only if G is a star. Thus, in what follows,
we assume that k ≥ 2 and |G| ≥ 3. Suppose that G admits an LT with at least
n−k leaves, and consider a DFS tree (T, r) witnessing that G is a YES-instance.
We can readily observe that the internal vertices X of (T, r) is a CVC of G,
and the subtree (TX , r) with height h ≤ |X| is a DFS tree of the graph G[X]
induced by X. This is also true for any subtree (TX′ , r), such that X ′ ⊇ X and
|X ′| ≤ k (see Figure 3b). However, given a graph G = (V,E) and a CVC X of
G, G[X] may not have a DFS tree TX that can be extended to a DFS tree T
of G by adding the vertices in V (G −X) to TX as leaves. An example of such
a CVC of a given graph is shown in Figure 3c. Using these intuitive ideas, we
characterize the graphs that admit an LT with at least n−k leaves by Lemma 5.
See Appendix A for the proof of this lemma.
Lemma 5. A graph G has an LT with at least n− k leaves if and only if it has
a set of vertices X ′ of size at most k satisfying the following properties:

1. X ′ is a connected vertex cover of G.
2. G[X ′] admits an LT partition (U0, ..., Uh) with h ≤ |X ′| such that, for any

vertex y ∈ V (G) \ X ′, if y is adjacent to a pair of vertices u, v ∈ X ′, then
either u is the ancestor of v or v is the ancestor of u in the LT formed by
(U0, ..., Uh).

Theorem 5. For all k ∈ N , there exists an MSO1 formula ϕk such that for
every graph G, it holds that ⌊G⌋ |= ϕk iff G is a YES-instance of Dual Max-
LLT.

To prove this, we construct the formula ϕk as a conjunction of formulas express-
ing the properties in Definition 3 and Lemma 5; see Appendix B.
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Dual Min-LLT For k = 1, every graph G is a YES-instance of Dual Min-
LLT. Thus, henceforth, we assume that k ≥ 2 and |G| ≥ 3. Let G be a given
graph that admits an r-rooted LT with at most n − k leaves (i.e., at least k
internal vertices), and consider a DFS tree T of G witnessing this fact. Then
any subtree (TX′ , r) of T , where X ′ = {x1, . . . , xk} is a set of k internal vertices
and r ∈ X ′ is the same as the root of T , is a DFS tree for the subgraph G[X ′]
induced by X ′; see Figure 4 for an example. Observe that, every leaf of (TX′ , r)

k
j

d

c

l

m
b

a
f

g
e

h

i

X ′

(a)

a

b m

c

d

e

f

g

h

i

j

k l

X ′

W = V (T ) \X ′

(b)

Fig. 4: (a) A graph G with a connected subset of vertices X ′ of size 5, and (b)
a DFS tree (TX′ , a) for G[X ′] that extends to an LT of G with internal vertices
X ′ ∪ {f, i, j}. W consists of three maximal connected subgraphs of G shown in
different colors.

is adjacent to a vertex in the set W = V (T ) \X ′, and each of the subtrees that
extend TX′ to form T is a DFS tree for some maximal connected component of
G−X ′.

As a result, we transform the problem of determining whether G admits an
LT with at most n−k leaves to that of deciding whether there exists a subset of
k vertices X ′, such that, the subgraph G[X ′] admits an r-rooted DFS tree TX′

isomorphic to a subtree (T ′, r) of an LT of G witnessing that G is a YES-instance.
To this end, we introduce the following definition.

Definition 4. Let G be a graph and X ′ = {x1, . . . , xk}, a set of k vertices that
induces a connected subgraph of G. We say that a tree-partition (U0, . . . , Uh) of
G[X ′] of height h ≤ k is a partial LT-partition of G or extends to an LT-partition
of G if it satisfies the following property: for every W ′ ⊆ V (G) such that G[W ′]
is a maximal connected subgraph of G −X ′, there exists x′ ∈ X ′ such that any
vertex x ∈ X ′ with at least one neighbor in W ′ is an ancestor of x′.

In Figure 4, it is easy to see that the subgraph induced by {k, j, i, l} does not
have a tree-partition that forms a partial LT-partition of G. For a partial LT-
partition of a given subgraph G[X ′] of size k to yield an LT of G with at most
n − k leaves, it is necessary that every leaf of the partial LT is adjacent to at
least one vertex in V (G)\X ′. Based on these intuitive ideas, we characterize the
YES-instances of Dual Min-LLT by Lemma 6; see Appendix C for the proof.
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Lemma 6. For every k ∈ N , a graph G = (V,E) has an LT with the number
of leaves ≤ n − k if and only if there exists a set of vertices X ′ of size at
least k satisfying the following property: G[X ′] admits a partial LT-partition
(U0, . . . , Uh) of height h ≤ k in which every leaf is adjacent to at least one vertex
in W = V (G) \X ′.

Now, we use Lemma 6 to obtain Theorem 6; see Appendix D for the proof.

Theorem 6. For all k ∈ N , there exists an MSO1 formula ψk such that for
every graph G, it holds that ⌊G⌋ |= ψk iff G is a YES-instance of Dual MIN-
LLT.

3.3 FPT Algorithms for Dual Min-LLT and Dual Max-LLT

In this section, we show the existence of an FPT algorithm for Dual Min-LLT
and Dual Max-LLT using the MSO formulations above, and Lemmas 7 and 8.
For the proofs of these lemmas, see Appendixes E and F.

Lemma 7. Given a graph G and a positive integer t, if G admits an LT with
height at most t, then G has a path decomposition of width at most t that can be
computed in linear time.

Lemma 8. Given a graph G and a positive integer k, if G admits an LT of
height at most k, then the length of any path in G is at most 2k+1 − 2.

Theorem 7. Dual Max-LLT parameterized by k ∈ N is in FPT.

Proof. Let G be a graph and k a positive integer. One observation that is easy
to make is that if G is a YES-instance of Dual Max-LLT, then G admits an
LT with height at most k. Thus, Dual Max-LLT can be solved as follows: (1)
Construct a DFS tree T by performing a DFS of G. If the height h of T is more
than 2k+1 − 2, then we know, by Lemma 8 that G does not admit an LT with
h ≤ k. Therefore, return NO and stop. (2) Otherwise, use Lemma 7 to read off
a path decomposition of G of width at most 2k+1 − 1 from T , one bag per leaf.
(3) Applying Courcelle’s theorem with Theorem 5 and this path decomposition,
it follows that checking whether G is a YES-instance is FPT in k. ⊓⊔

Theorem 8. Dual Min-LLT parameterized by k ∈ N is in FPT.

Proof. The proof follows steps analogous to that of Theorem 7. Construct any
DFS tree T . If T has at most n − k leaves, return YES and stop. Otherwise,
we use Lemma 7, to obtain a path decomposition of G of width at most k from
T . With this, Theorem 6, and Courcelle’s theorem implies that we can derive
an FPT algorithm that runs in time linear in n to check whether G is a YES-
instance. ⊓⊔
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4 Conclusion

In this paper, we have shown hardness results for four natural parameterized
problems that have to do with finding an LT (or DFS tree) with a restricted
number of leaves. Our theorem shows that k-Max-LLT is hard for W[1]. This
raises the natural question of where it belongs in the W-hierarchy with respect to
membership. Is it in W[1] and thus W[1]-complete? Is it in W[P]? It seems to be
AND-compositional, like the Bandwidth problem, as discussed in [18] and we
conjecture that k-Max-LLT cannot be in W[P] for reasons similar to the case
of Bandwidth. We have also shown that Dual Min-LLT and Dual Max-
LLT are FPT parameterized by k. Instead of relying on Courcelle’s theorem to
show the existence of an FPT algorithm for these problems, we believe it should
be possible to construct an algorithm that solves each problem explicitly via
dynamic programming over the path decomposition returned by our algorithm.
An obvious question is whether both problems admit a polynomial kernel.

On the complexity of finding a lineal topology that satisfies lower or upper
bounds on the height h of the DFS tree, the only known results are the NP-
hardness results due to Fellows et al. [17] (see Section 1). A consequence of
our Theorem 7 is that the problem of testing whether a graph G has an LT of
height h at most k is FPT with respect to k. The natural parameterized problem
h ≥ n − k is para-NP-complete, since it is equivalent to Hamiltonian Path
when k = 1. We plan to investigate the PC of: (i) h ≤ n − k, and (ii) h ≥ k,
which we believe is FPT parameterized by k.
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A Proof of Lemma 5

Proof. Suppose properties (1) and (2) are true and (TX′ , r) is the DFS tree with
height h ≤ |X ′| associated with the LT partition (U0, . . . , Uh) of the graph G[X ′].
By definition, G−X ′ is an independent set, and any vertex u in G−X ′ has at
least one neighbor in X ′. We extend the LT induced by TX′ to an LT of G by
adding the edges e = vu, where v ∈ X ′, to TX′ . Property (2) ensures that the
resulting tree T is a DFS tree and any edge vu ∈ E(G) \E(T ) is a back edge. If
each leaf of TX′ has at least one neighbor in G−X ′, then G−X ′ are the leaves
of T by construction. If not, then the internal vertices X of T is a subset of X ′

and the leaves of T constitute G −X ′ and the leaves of TX′ with no neighbors
in G − X ′. Thus, this construction gives us an LT with |X| ≤ |X ′| ≤ k, or, at
least n− k leaves. See Figure 3b for an illustration.

Let T = (G, r, T ) be an LT of G with at least n−k leaves. We choose the set
of vertices X ′ as the set of internal vertices X of T and zero or more leaves of T ,
so that |X ′| ≤ k. Clearly, X ′ is a CVC of G because G −X ′ is an independent
set and (TX′ , r) is a DFS tree associated with an LT-partition of G[X ′]. ⊓⊔

B Proof of Theorem 5

Proof. We construct the formula ϕk as a conjunction of formulas expressing the
properties in Definition 3 and Lemma 5, i.e.

ϕk ≡ ∃X′⊆V ∃x1,...,xk∈X′

[(
∀x∈V x ∈ X ′ ⇒

∨
i∈[k]

(x = xi)
)
∧ conn(X ′, V )

∧ vc(X ′, V ) ∧
∨

i∈[2,k]

(
∃U0,...,Ui⊆X′lt-partition(U0, . . . , Ui, V )

∧ (∀x∈V−X′∃u,v∈X′adj(x, u) ∧ adj(x, v)) ⇒ (ancestor(u, v, U0, . . . , Ui)

∨ ancestor(v, u, U0, . . . , Ui))
)]
.

While the formulas conn and vc verify that the vertex set X ′ is a connected
vertex cover of G, lt-partition verifies that (U0, . . . , Uh) is an LT partition of
X ′, i.e.

conn(X ′, V ) ≡ ∀S⊆V

(
(∃u∈X′u ∈ S ∧ ∃v∈X′v ∈ V − S) ⇒ (∃u,v∈X′adj(u, v)

∧ u ∈ S ∧ v ∈ V − S)
)
,

vc(X ′, V ) ≡ ∀x,y∈V

(
adj(x, y) ⇒ (x ∈ X ′ ∨ y ∈ X ′)

)
,

lt-partition(U0, . . . , Uh, V ) ≡ tree-partition(U0, U1, . . . , Uh, V )

∧
(
∀u,v∈V adj(u, v) ⇒

(ancestor(u, v, U0, . . . , Uh)

∨ ancestor(v, u, U0, . . . , Uh)
)
.
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The formula tree-partition verifies that (U0, . . . , Uh) satisfies properties (1) -
(3) in Definition 3, i.e.

tree-partition(U0, U1, . . . , Uh, V ) ≡ part(U0, U1, . . . , Uh, V ) ∧ root(U0)

∧
h∧

i=1

(∀v∈Ui∃u∈Ui−1uniqN(v, u, Ui−1)).

Here, the auxiliary subformula part verifies that U0, U1, ..., Uh is a partition of
the vertex set V . root verifies that U0 contains only one element and uniqN
verifies that (U0, . . . , Uh) defines a tree where r ∈ U0 is the root, i.e.

part(U0, U1, . . . , Uh, V ) ≡ ∀v∈V

( h∨
i=0

(
v ∈ Ui ∧ (

∧
j∈[0,h]
j ̸=i

v /∈ Uj)
))
,

root(U0) ≡ ∃r∈U0

(
∀x∈U0

x = r
)
,

uniqN(v, u, Ui) ≡ adj(v, u) ∧ ¬
(
∃w∈Ui

w ̸= u ∧ adj(v, w)
)
.

The formula ancestor defined below verify that the tree-partition is an LT-
partition, i.e.

ancestor(u, v, U0, . . . , Uh) ≡
∨

i,j∈[0,h]
i<j

(
u ∈ Ui ∧ v ∈ Uj

∧ (∃vi+1∈Ui+1,...,vj−1∈Uj−1
adj(u, vi+1)

∧ adj(vi+1, vi+2) ∧ . . .
∧ adj(vj−2, vj−1)) ∧ adj(vj−1, v)

)
.

⊓⊔

C Proof of Lemma 6

Proof. Suppose we have a partial LT-partition of G[X ′] such that TX′ is the
associated DFS tree. Then we extend the LT for G[X ′] to an LT for G as follows.
We do a DFS of G from r by traversing the set of vertices X ′ according to their
DFS order in TX′ . By definition, every vertex w in each connected component
G[W ′] of G−W is reachable from some vertex in X ′ and every unexplored edge
that leads from a vertex in G[W ′], either leads to a new/old vertex in G[W ′] or
an already visited vertex in X ′. Thus, the DFS results in an LT for G in which
the internal vertices of the DFS tree T consist of X ′ and the vertices in each
connected component of G−W that have at least one descendant with respect
to T . The leaves are the vertices in each W ′ with no descendants in T .

Conversely, suppose we have an LT ofG defined by a DFS tree (T, r), with ≥ k
internal vertices. Let (TX′ , r) be any subtree of T , where X ′ is a set of internal
vertices of size k. Obviously, (TX′ , r) is a DFS tree for the subgraph G[X ′]
induced by X ′. Now, consider any subtree (TW ′ , wi), where W ′ ⊆ V (T ) \ X ′
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and wi is a child of x ∈ X ′ in T , such that for all y ∈ X ′ ∩ N(W ′), y is on a
path from x to r in T . It is clear that each such subtree is a DFS tree for some
connected component G[W ′] of G−X ′. ⊓⊔

D Proof of Theorem 6

Proof. Using the properties stated in Lemma 6, and Theorem 5, we construct
ψk as follows:

ψk ≡ ∃X′⊆V ∃W=V \X′∃x1,...,xk∈X′

[
conn(X ′, V ) ∧ (∀x∈V x ∈ X ′ ⇒

∨
i∈[k]

(x = xi))

∧ (x ∈W ⇒ x /∈ X ′) ∧
∨

i∈[2,k]

(
∃U0,...,Ui⊆X′lt-partition(U0, . . . , Ui, X

′, V )

∧ (∀x∈X′leaf(x, U0, . . . , Ui) ⇒ ∃y∈W adj(x, y))

∧
(
∀W ′⊆W

(
maxconn(W ′,W, V ) ⇒

(
∃x′∈X′

(
∀xi∈X′∃w∈W ′adj(xi, w)

⇒ (ancestor(x′, xi, U0, . . . , Ui))
)))))]

,

where the formulas conn, lt-partition, uniqN, and ancestor are the ones
defined in the proof of Theorem 5. We use lt-partition here to check whether
(U0, . . . , Ui) is an LT partition of G[X ′]. While the formula maxconn verifies
that W ′ induces a maximal connected subgraph of G[W ], the formula leaf
checks whether the vertex v is a leaf of the DFS tree associated with the LT-
partition (U0, . . . , Ui), i.e.

maxconn(W ′,W, V ) ≡ conn(W ′, V ) ∧ ∀v∈W\W ′¬∃u∈W ′adj(v, u),

leaf(v, U1, . . . , Ul) ≡
l∨

i=1

(
v ∈ Ui ∧ ∃u∈Ui−1

uniqN(v, u, Ui−1)

∧ ¬
(
∃w∈Ui+1

uniqN(w, v, Ui)
))
.

⊓⊔

E Proof of Lemma 7

Proof. Suppose T is a DFS tree of G with height h ≤ t, and L is the set of leaves
of T . For every leaf l ∈ L, we denote by Bl the subset of vertices on the leaf-
to-root path P (l, r) in T . We argue that the pair (PD, B), where PD is a path,
and B = {Bl|l ∈ L} is a family of subsets of V (G) form a path decomposition
of G. Recalling the definition of a tree decomposition in Section 2, condition (1)
is satisfied because, for all u ∈ V (G), there exists some leaf l ∈ L such that
u ∈ P (l, r). Similarly, condition (2) follows from the property of T that, for
every uv ∈ E(G), there exist some l ∈ L such that u, v ∈ P (l, r). Condition
(3) follows from our construction of the path decomposition (PD, B). Since the
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length of every leaf-to-root path is upper bounded by t, the number of vertices
in each bag Bl cannot be more than t+1. Clearly, we can construct such a path
decomposition in linear time by a single traversal of T . ⊓⊔

F Proof of Lemma 8

Proof. Suppose G is a graph that has a DFS tree with height h ≤ k, and let T
be such a DFS tree. Let P k denote the length of the longest path in G. We show
by induction on the height h of T that P k ≤ 2k+1− 2. If h = 1, the longest path
in G can consist of only two branches of T . Thus P 1 = 21+1 − 2 = 2, proving
our claim. We now assume that the lemma is true for all h ≤ k, for some k ∈ N.
For the induction step, suppose G is a graph with an LT of height h = k + 1.
Let v1, v2, ..., vt be the children of r in T and let G1, G2, .., Gt be the connected
components of G − r such that for i = 1, ..., t, vi ∈ V (Gi) and the subtree Tvi
defines an LT of height at most k for Gi. By the induction hypothesis, the length
of the longest path P k in Gi for some i ∈ 1, ..., t is at most 2k+1−2. The longest
path in G can use at most 2 branches of r. Let P1, P2, Pr be subpaths of P k+1

such that P k+1 = P1 + Pr + P2, where P1 and P2 are the longest paths in Gi

and Gj respectively for some i, j ≤ t and Pr is a path that goes from Gi to Gj

via r. Thus P k+1 ≤ 2k+1 − 2+ 21+1 − 2+ 2k+1 − 2 = 2(k+1)+1 − 2. If r has only
one child in T , say v1, the longest path in G is the longest path in Gi plus the
edge rv : v ∈ Gi. Thus P k+1 ≤ 2k+1 − 2 + 1 = 2k+1 − 1 ≤ 2(k+1)+1 − 2 . This
shows that the lemma is true for all h ≥ 1. ⊓⊔
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