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Abstract. At the beginning of the 2000s, a specific type of Recurrent
Neural Networks (RNNs) was developed with the name Echo State Net-
work (ESN). The model has become popular during the last 15 years in
the area of temporal learning. The model has a RNN (named reservoir)
that projects an input sequence in a feature map. The reservoir has two
main parameters that impact the accuracy of the model: the reservoir size
(number of neurons in the RNN) and the spectral radius of the hidden-
hidden recurrent weight matrix. In this article, we analyze the impact of
these parameters using the Recurrence Plot technique, which is a useful
tool for visualizing chaotic systems. Experiments carried out with three
well-known dynamical systems show the relevance of the spectral radius
in the reservoir projections.
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1 Introduction

Recurrent Neural Networks (RNNs) are neural networks with cyclic path of con-
nections among their neurons [1]. Due to this underlying property, they posses
powerful computational and dynamical memory capabilities which make them
suitable for modeling nonlinear relationships among sequential and temporal
data. In the early 2000s, Echo State Network(ESN) [2] and a closely related
approach known as Liquid State Machine (LSM) [3]), introduced a new com-
putational framework for training RNN. This framework, which has lately be-
come known as Reservoir computing (RC) [4], demonstrates that RNN can still
perform significantly well even when only a subset of the network weights are
trained. In this approach, a randomly initialized RNN, known as reservoir, im-
proves the linear separability of the input data. The reservoir (a matrix with the
hidden-hidden weights) projects the input data in a feature space, then a super-
vised model is used to perform the outputs. Due to its simplicity, robustness,
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computational speed, and ease of implementation, RC has become popular in
the Artificial Neural Network Community [5]. It has yielded successful results in
many benchmark problems [5]. The ESN model and its variations have also been
successfully applied on practical problems such as time series predictions [6, 5]
and pattern classification [2].

The computational power of ESN is based largely on the reservoir structure,
and therefore the design of the reservoir and its characteristics have been the
focus of many RC research over the years [7–9]. The standard ESN reservoir is
influenced by a number of global parameters, which impact in the model accu-
racy. The most relevant ones are: sparsity and spectral radius of the reservoir
matrix and dimension of the reservoir matrix [10]. The spectral radius of the
reservoir matrix is related to a fundamental algebraic property, known as Echo
State Property (ESN) [2], that ensures the state of the reservoir is suitable for
good predictions. Guidelines on how the spectral radius can be tuned to guar-
antee good performance of ESN can be seen in [2]. In this study, we exploit the
power of Recurrence Plot (RP) [11], a visual representation of the recurrences of
dynamical systems, to investigate the effect of a given reservoir size and spectral
radius combination on the dynamics of ESN reservoir. We generate several reser-
voir architectures with a given set of parameters and feed it with a benchmark
signal. Then, we apply RP to analyze the reservoir projections. We experiment
with three well-known benchmark datasets which include Henon, Lorenz, and
Rossler dataset. A description of these benchmarks can be found in [7]. The
possibility of exploring the dynamics of ESN and analyzing the stability of the
recurrences has also been studied in [12]. The authors analyzed the effect of the
input signal in the dynamics using RP and Recurrence Quantification Analy-
sis (RQA) over two signals: sinusoidal waveform and Mackey-Glass time-series.
In this article, we focus on analyzing the impact of the pair: reservoir size and
spectral radius in the stability and accuracy of the ESN model using RP.

The rest of this paper is organized as follows. Section 2 describes the ESN
model and its properties, and reviews relevant literature on ESN. Section 3 pro-
vides a description of the methodology for this study. Experimental results and
their related explanations are presented in Section 4. We end with a discussion
and recommendations for future work.

2 Description of Echo State Network

An ESN is made up of two main distinct structures: a random initialized and
fixed hidden-hidden weights matrix called reservoir and a parametric mapping
often a linear regression called readout. When its input neurons are driven by a
signal, s(t) at any time t, the reservoir acts as a dynamical system that trans-
forms the original input signal from an input space Rp into a larger space Rd

with p � d, using a high dimensional feature map. Like kernel functions, this
enhances the linear separability of the input data. Additionally, the recurrent
matrix memorizes the sequence of input patterns, making the ESN suitable for
solving temporal learning problems. The readout structure is a parametric map-
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ping (often linear) from the feature map created by the reservoir and the output
space. A characteristic of the model is that it does not train the hidden-hidden
weights; only the readout parameters are trained. As a consequence, the model
is fast and robust, and the problem of vanishing-exploding gradient [13] that is
often presented in the training of RNNs is avoided. Several extensions and varia-
tions of the standard ESN model have been proposed in the literature. Examples
include: intrinsic plasticity [14], BackPropagation-Decorrelation [15], Decoupled
ESN [16], Leaky integrator [17], Evolino [18], and a recently introduced Echo
State Network based on Queuing Theory [19, 6].

In this study we consider an ESN with standard topology containing an input
layer with p neurons connected to d hidden neurons, and a readout layer with
o neurons. We assume that both input and output signals are real values, and
we consider discrete time. The input weight matrix for the connections between
the input neurons and reservoir neurons is denoted by Win whilst the weight
matrix for the internal connections inside the reservoir and the weight matrix
for connections between the reservoir and readout layer are denoted by Wr and
Wout respectively. The dimensions of these matrices are d× (1 + p), d× d, and
o × (1 + p + d), respectively. The first row of Win and Wout contains a value
corresponding to bias terms.

Given a training set composed of input signal s(t) ∈ Rp the reservoir updates
its activation state x(t) = (x1(t), ..., xN (t)) using an activation function gh(·)
with parameters Win and Wr as follows:

x(t) = gh(s(t),x(t− 1),Win,Wr). (1)

Next, the parametric function shown below uses the actual reservoir states to
execute the model output:

ŷ(t) = go(x(t),Wout),

where gh(·) is an activation function with parameters in Wout. Although in the
standard ESN model there are no connections between the input and readouts
neurons [3, 20], another readout form is the following:

ŷ(t) = go(s(t),x(t),Wout). (2)

In this study, we used hyperbolic tangent tanh(·) as the activation function gh(·),
and the dynamics was computed as:

x(t) = tanh(Wins(t) + Wrx(t− 1)). (3)

The output of the model, ŷ(t) at a given time t is computed as follows:

ŷ(t) = Wout[s(t);x(t)], (4)

where [·; ·] denotes a vector concatenation operation.
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3 Methodology

We conducted experiments on three popular signals: Henon, Rossler, and Lorenz
datasets. A detailed description of the datasets can be found in [7]. The samples
in the dataset were initially normalized to lie between 0 and 1, and the resulting
data was divided into two subsets: 80% was used to train the ESN and the
remaining 20% was used to test it. As mentioned above, we consider a standard
ESN where Win and Wr are randomly initialized with uniformly distributed
weights in the range [−0.5, 0.5]. For each dataset, the reservoir was configured
with different combinations of reservoir size d and spectral radius ρ. We consider
the pair (d, ρ) with values in the grid generated by d = {100, 250, 500} and
ρ = {0.1, 0.5, 0.99}. The reservoir states are updated with a leaking rate of 0.3
and the output weights are estimated by setting the regularization factor in the
linear regression model to 1 × 10−3. The trained ESN was ran in a generative
mode (i.e. previous predictions were fed back into the reservoir as input for the
next prediction), and the effect of a selected pair of parameters (d, ρ), on the
accuracy of the ESN model was measured with Mean Square Error (MSE). The
corresponding dynamical properties of the ESN reservoir was visualized using
Recurrence Plot (RP) [11]. In the following we present a brief introduction of
the RP technique.

We use a subset Xsub that collects n states during the training of the ESN
model to generate the recurrence matrix R, to stand for the recurrences of the
reservoir states. In the experimental results we set up the same value of n = 500
for all the signals. Given any multidimensional signal x(i)ni=1, then the corre-
sponding RP is based on the following matrix:

Ri,j =

{
1 : x(i) ≈ x(j),
0 : x(i) 6≈ x(j),

i, j = 1, . . . , n,

where n is the number of states considered. We say that x(i) ≈ x(j) if an
arbitrary distance function is lower than an arbitrary value ε. In our case, we
consider the sequence of reservoir states. Therefore we created the binary entries
of R using the following rule [11]:

Ri,j =

{
1, if ‖x(i)− x(j)‖ < ε, i, j = 1, ...n,

0, otherwise,
(5)

where ‖·‖ is the L2 − norm(Euclidean norm), and ε is a threshold distance,
computed using a percentage of the distance between the maximum L2 − norm
and the minimum L2 − norm of Xsub. There are several variations of the RP
technique, the main differences among them are the type of distance functions
and epsilon values [11]. In the experimental results we visualize the reservoir
matrix using three threshold distances: ε1, ε2, and ε3, computed using the 10%,
50%, and 100% of the distance between the maximum and the minimum values
in the L2 − norm of Xsub.



Analysis of the Dynamics of the ESN model using RP 5

4 Experimental results

In this section we present experimental results related to different configurations
of the ESN reservoir. For each benchmark signal, we discuss the effect of each
combination of reservoir size and spectral radius (d, ρ) on the accuracy of ESN,
and interpret the dynamics of the reservoir using their associated RPs. Table 1
presents the accuracy for each of the analyzed dataset. The table shows the
MSE according to the pairs (d, ρ). In the case of an ESN with a reservoir of
500 neurones and a spectral radius of 0.1 we obtained unstable results for the
Rossler dataset, therefore it is not presented in the table.

Figures 1a and Figure 1b present RPs representing the input signals from
the Lorenz and Rossler data sets respectively. Figures 2a and 2b show the RPs
and MSEs related to two different values of ρ with 100 neurons when driven
by input signals from the Henon dataset. Though the recurrence matrices were
obtained with similar ε (i.e. ε = 0.281 in Figure 2a and ε = 0.282 in Figure 2b),
the MSEs are different and the RP in Figure 2b is more sparse. Figures 3a and
3b present results based on the Lorenz dataset. The figures represent the RPs
obtained with ε = 0.45 (in Figure 3a) and 0.55 (in Figure 3b), for a reservoir with
100 neurons and spectral radius of 0.1 (in Figure 3a) and 0.99 (in Figure 3b).
Note that, the RP shown in Figure 3b was obtained with an ε value larger than
the one shown in Figure 3a. In spite of this, the RP created with ρ = 0.1 is
much more dense than the RP visualization created with an ESN with spectral
radius ρ = 0.99. Besides, the MSE for Figure 3b is lower than that for Figure 3a.
Figures 4a and 4b represent the projections of the reservoir when the patterns
are from the Rossler dataset. The reservoir has 100 neurons and the ε has values
0.47056 (in Figure 4a) and 0.59753 (in Figure 4b) and spectral radius of 0.1
(in Figure 4a) and 0.99 (in Figure 4b). Similar to the case of Lorenz dataset,
the reservoir configuration which reaches lower MSE is the one that is more
sparse when visualized using RP (i.e. Figure 4b). Even though the ε of Figure 4a
is lower than ε that of Figure 4b, the visualization presented in Figure 4a is
much more dense than the one presented in Figure 4b. Figures 5a and 5b show
visualizations of the reservoir projection for the Lorenz problem. Both figures
have same spectral radius but different reservoir sizes. As a consequence, we can
see how the reservoir size does not present a relevant impact in the recurrence
dynamics.
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Table 1: ESN accuracy using different network architecture.

Data d ρ MSE Data d ρ MSE Data d ρ MSE

Henon Lorenz Rossler

100 0.1 0.16013185 100 0.1 0.05212761 100 0.1 0.06859436
100 0.5 0.15717055 100 0.5 0.12274431 100 0.5 0.03451661
100 0.99 0.14910897 100 0.99 0.09936286 100 0.99 0.02423478
250 0.1 0.16173990 250 0.1 0.12022802 250 0.1 -
250 0.5 0.16061450 250 0.5 0.08143574 250 0.5 0.06668869
250 0.99 0.15219079 250 0.99 0.11635624 250 0.99 0.01436883
500 0.1 0.16722330 500 0.1 0.13998824 500 0.1 -
500 0,5 0.14815264 500 0.5 0.08130847 500 0.5 0.07337573
500 0.99 0.15553267 500 0.99 0.07223923 500 0.99 0.00776130

(a) Visualization using RP of a time-
windows of the Lorenz dataset.

(b) Visualization using RP of a time-
windows of the Rossler dataset.

Fig. 1: .Visualization of the original sequential data.

(a) MSE: 0.15057836. (b) MSE: 0.16286800.

Fig. 2: Henon dataset: RPs created with 100 reservoir neurons and a spectral
radius of 0.1 (Figure 2a) and 0.99 (Figure 2b), and epsilon of 0.281 (Figure 2a)
and 0.282 (Figure 2b).
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(a) MSE: 0.1266841. (b) MSE: 0.08377580.

Fig. 3: Lorenz dataset: RPs created with 100 reservoir neurons and a spectral
radius of 0.1 (left figure) and 0.99 (right figure), and epsilon of 0.45 (left figure)
and 0.55 (right figure).

(a) MSE: 0.06859436. (b) MSE: 0.02423478.

Fig. 4: Rossler dataset: RPs created with 100 reservoir neurons and a spectral
radius of 0.1 (Figure 4a) and 0.99 (Figure 4b), and epsilon of 0.47056 (Figure 4a)
and 0.59753 (Figure 4b).

(a) MSE: 0.11635624. (b) MSE: 0.07223923.

Fig. 5: Lorenz dataset: RPs created with matrices with same spectral radius
(ρ = 0.99), and different reservoir size. Figure 5a was made with a reservoir with
250 neurons and Figure 5b was made with a reservoir of 500 neurons.
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5 Conclusions and Future Work

In this paper, we have investigated the effect in the accuracy of the two main
parameters of the Echo State Network (ESN) model. We used Recurrence Plots
(RPs) for visualizing the recurrences generated by the phase space of the pro-
jections built by the hidden-hidden weight matrix (reservoir). We can infer from
the experiments that, although both the reservoir size and spectral radius have
significant effect on the accuracy of the model, the spectral radius of the reservoir
matrix is much more relevant than the reservoir size as far as the projections are
concerned. In other words, the sequence of reservoir states present similar char-
acteristics, regardless of the reservoir size. However, the sequence of reservoir
state is characterized by the spectral radius of the reservoir matrix. We noticed
that, regardless of the epsilon used to obtain the RP, lower spectral radius (i.e.
ρ = 0.1) lead to dense RP as well as higher MSE, and higher spectral radius
(ρ = 0.99) lead to sparse RP as well lower MSE in most cases. Thus, another
relevant result is that we found a relationship between the model accuracy and
the RP matrix. In general, we obtain better results when the RP matrix is sparse
and it has a form similar to the original input signal. In future work, we would
like to analyze the relationship between the RP matrix and the memory capacity
of the model.
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