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Abstract. In pixel classification-based segmentation both the quality of
the feature set and the pixel classification technique employed may influ-
ence the accuracy of the process. Motivated by the potential of Structural
Tensors in the extraction of hidden information about texture between
neighboring pixels and the computational capabilities of Echo State Net-
work (ESN), this study proposes a tensor-based segmentation approach
using the standard ESN. The pixel features of the image are initially
extracted by incorporating Structural Tensors in order to enrich it with
information about image texture. Then the resulting feature set is fed
into ESN and the output is trained to classify unseen pixels from the
testing set. The effect of the two main parameters that impact the accu-
racy of ESN: reservoir size and spectral radius, was also evaluated. The
results are promising when compared to recent state-of-the-art segmen-
tation approaches.

Keywords: Image segmentation, Image processing, Echo State Net-
work, Support Vector Machine, Feature extraction

1 Introduction

An image segmentation technique consists of partitioning an image into different
meaningful regions such that each region is homogeneous [1]. It forms an essen-
tial component of image processing, as it seeks to delineate the boundaries of
various objects of interest in an image or parts of an image for further analysis.
The delineation is usually based on image features such as colour, shape, texture
or a mixture of these. But the process is accompanied by complexities such as
the presence of noise, overlap between intensities of different objects,variation
of contrast and weak edges [2]. Therefore, even though a number of segmenta-
tion techniques have been proposed, no single technique can be considered good
for all images. The quality of image segmentation based on features created by
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structural Tensor has been analyzed recently in [3]. Structural Tensor (ST) is
capable of extracting information on texture, which is within the neighborhood
of a pixel. In [3], structural information extended with information about color,
intensity, or a mixture of these features was found to be useful in achieving op-
timal color image segmentation outcome. Therefore this study chooses to adopt
this method of feature extraction to test the quality of image segmentation using
Echo State Network (ESN) [4].

ESN and a closely related approach known as Liquid State Machine (LSM) [5]
were introduced in the early 2000s as alternative approach to gradient-descent
based approaches for training Recurrent Neural Networks (RNNs). The compu-
tational approach introduced by these two independent but simultaneous models,
which has recently become known as Reservoir Computing, demonstrates that
RNN can still perform significantly well even when only a subset of the network
weights are trained. ESN consists of a RNN of fixed random weights known
as reservoir, and a supervised learning model called the readout. When driven
by an input signal, the reservoir improves the linear separability of the input
data using a high dimensional feature map, and preserves the nonlinear trans-
formation of the input history in its internal states. A classification or prediction
problem can then be solved by training only the weights of the readout structure
using the collected reservoir activation states.Therefore the training procedure
is fast, and avoids the problem of vanishing exploding gradient [6] introduced
by gradient-descent methods. However, the reservoir is influenced by a number
of global parameters which in turn impacts the accuracy of the model.The most
relevant of these parameters are sparsity, spectral radius of the reservoir matrix,
and reservoir size or the dimension of the reservoir matrix [7]. Guidelines on
how these parameters can be tuned to guarantee that the state of the reservoir
is suitable for good predictions can be found in [4, 8].

The internal reservoir activations provided by the dynamics of ESN reservior
has been sufficient in solving many benchmark problems(e.g. [4, 9]) and practical
problems such as time series predictions [8, 10]. In [2], the potential of the ESN
reservoir to refine pixel features for colour image segmentation and the influ-
ence of the above mentioned parameters on the results have been investigated.
In this work, the readout for the classification was realized with a Multi-Layer
Perceptron (MLP) consisting of two hidden layers with 15 neurons. Besides, a
tensor-based supervised classification method that uses Tucker decomposition
to approximate the outputs from the ESN reservoir was proposed in [11], and
numerical experiments carried out with spatiotemporal data outperforms the
traditional method based on linear output weight, in terms of classification ac-
curacy.

However, this study explores the potential of the standard ESN model with
linear regression readout for achieving good image segmentation results when
applied on Tensor-based feature set. To test the resilience of ESN to redundant
and noised pixel attributes, no feature reduction techniques were applied. Finally,
we evaluate the influence of spectral radius and reservoir size on the accuracy of
image segmentation and compare the best result with the accuracy attained with
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Support Vector Machine [12] (when applied on the same tensor-based feature
set) as well as the accuracy of existing state of the art methods. The rest of this
paper is organized as follows. Section 2.2 presents a description of Structural
Tensor as well as ESN and its properties. 3 provides a description of the dataset
and the experimental setup for this study. The results of the experiments and
related discussions on how reservoir size and spectral radius impacts the quality
of image segmentation are presented in Section 4. We conclude and present
recommendation for future work in Section 5.

2 Background

This section consist of two parts. It presents a description of the concept of
Structural Tensor, followed by a description of the ESN model and its properties.

2.1 Structural Tensor

Structural tensor allows for the extraction of valuable information on texture in
addition to information on color and intensity [3]. For any given two dimensional
image I, the structural tensor ST at a point p0 can be computed using the
following formula:

ST(p0) = GR(p0)
(DDT ) (1)

where R(p0) is the compact nearest neighbourhood of p0, GR(p0)
is an aver-

aging operator in the region R, centered at a point p0, and D denotes an image
gradient vector at each point p in R, computed as follows [3]:

D(p) =

[
Ix(p)
Iy(p)

]
(2)

where Ix(p) and Iy(p) are discrete spatial derivatives of I at point p in
the x and y directions respectively. The averaging operator GR(p0)

, can simply
be realized using a discrete binomial or Gaussian filter [13]. However, for more
precise computations nonlinear anisotropic filter is used. Discussions on this can
be found in [3]. After applying the filter GR to average over a set of points in R,
ST becomes a symmetric positive 2D matrix which elements describe average
values of the gradient components in the neighborhood defined at the given point
p0 [3]:

ST = GR

([
Ix
Iy

] [
IxIy

])
=

[
IxIx IxIy
IyIx IyIy

]
=

[
Txx Txy

Txy Tyy

]
(3)

The structural tensor ST does not only carry information on signal changes
at a single point p0 but also at all points in the nearest neighborhood of p0.
Therefore it conveys information on overlapping regions (i.e. image texture and
local curvature) around p. To include information on colour/intensity, the 2D
vector D(p) can be extended to get the 3D vector E:

ET(p) =
[
DT I(p)

]T
=

[
Ix Iy I

]T
(4)
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By substituting 4 into 1, the Extended Structural Tensor(EST) is obtained as
follows:

EST = GR(EET ) = GR

([
Ix
IyI

] [
IxIyI

])
=




I2x IxIy IxI
IyIx I2y IyI
IxI IyI I2


 (5)

Now EST contains average components of the gradient, besides average squared
intensity signal, as well as mixed products of the gradient component and inten-
sity [3]. To account for the components IR, IG, IB of a colour image, EST can
be obtained by replacing D in 1 with the following vector: the following vector
F:

FT(p) =
[
DT I(p)

]T
=

[
Ix Iy IR IG IB

]T
(6)

The result is a positive definite symmetrical matrix, which contains fifteen com-
ponents.

2.2 Description of Echo State Network

As shown in 1, the architecture of ESN consist of an input layer with p neu-
rons connected to d hidden neurons, and an output layer with o neurons. The
connections between these layers form two main structures: a reservoir struc-
ture and a readout structure. The reservoir (RNN) structure is defined by the
tuple (Win,Wr), where Win and Wr are randomly generated input connection
(input-to-hidden) and recurrent connection (hidden-to-hidden) weight matrices
with dimensions d× (1 + p) and d× d respectively, and the readout consist of a
hidden-to-output weight matrix Wout with dimensions o× (1+p+d), which are
usually trained with linear regression model. The 1 accounts for the dimension of
the first row of Win and Wout which usually contains 1s corresponding to bias
terms. When p is driven by an input signal s(t) from an input space Rp at any

Fig. 1: Architecture of a standard ESN model.

time t, the reservoir uses Win as a high dimensional feature map to transform
the signal into a larger space Rd with p ≪ d, and then memorizes the nonlinear
transformations of the input history in its internal states.

Given a training set composed of input signal s(t) ∈ Rp, the reservoir updates
its internal states x(t) = (x1(t), ..., xN (t)) according to the following formula:

x(t) = gh(s(t),x(t− 1),Win,Wr). (7)
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Next, the parametric function shown below uses the actual reservoir states to
execute the model output:

ŷ(t) = go(x(t),W
out), (8)

where go(·) is an activation function with parameters in Wout.
Although in the standard ESN model there are no connections between the

input and readouts neurons [4], another readout form is the following [8]:

ŷ(t) = go(s(t),x(t),W
out). (9)

In this study, we used hyperbolic tangent tanh(·) as the activation function gh(·),
and so the dynamics was computed as:

x(t) = tanh(Wins(t) +Wrx(t− 1)). (10)

The output of the model, ŷ(t) at a given time t is computed as follows:

ŷ(t) = Wout[s(t);x(t)], (11)

where [·; ·] denotes a vector concatenation operation.

3 Methodology

In this section, we explain the dataset and the experimental setup used to eval-
uate the usefulness and effectiveness of ESN for tensor-based colour image seg-
mentation.

3.1 Data Description

The datasets employed in this study to analyze the quality of tensor-based im-
age segmentation using ESN were the original datasets extracted by a proposed
Tensor-Based Image Segmentation Algorithm (TBISA) in [3] for a similar study
using other classifiers. The datasets were based on Berkley Segmentation Bench-
mark images [14], which consisted of seven images identified as ’35058’, ’41033’,
’66053’, ’69040’, ’134052’, ’161062’,and ’326038’. These images consisted of masks
for two and three class detection problems. However, this study concentrated on
the masks for two class detection problems. The masks were defined by [3] based
on the original segmentation contour published on source page.

The EST feature set is made up of fifteen features which include tensor infor-
mation on a pixel and its neighborhood, as well as mixed products of these. Be-
sides, it has a corresponding class label that indicates whether the pixel belongs
to an object or a background. Detailed description of the extraction process,
and the Tensor-Based Image Segmentation Algorithm (TBISA) employed can
be found in [3].
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3.2 Experimental Setup

First of all, the EST datasets for all the seven images were combined into one
dataset. The values of attributes which form each feature vector were then nor-
malized to lie between 0 and 1, and the pixels were randomized. The resulting
data was divided into two subsets: 80% was used to train the ESN and the
remaining 20% was used to test it. We experimented with two different clas-
sifiers: a standard ESN where Win and Wr are randomly initialized with uni-
formly distributed weights in the range [−0.5, 0.5], and SVM classifier which
uses a Gaussian radial basis (RBF) kernel function. In order to test the effect of
spectral radius and reservoir size on the effectiveness of ESN as a classification
algorithm, the reservoir was configured with different combinations of the follow-
ing reservoir sizes d and spectral radius ρ: d = {150, 200, 300, 400, 500, 600} and
ρ = {0.1, 0.3, 0.5, 0.99}. The selection of these range of values were informed by
previous researches (e.g. [15, 2]) which considered the influence these parameters
on the performance of ESN. The reservoir states were updated with a leaking
rate of 0.3 and the output weights were estimated by setting the regularization
factor in the linear regression model to 1 × 10−2. The classification accuracy
resulting from the selected pair of parameters (d, ρ), was estimated using Ac-
curacy. The experiment for each combination of parameters was repeated five
times and the average accuracy was recorded.

4 Results and Discussion

The mean and standard deviation of all the accuracies that resulted from the
various combinations of d and ρ were 0.955431026 and 0.000026323 respectively.
Table 1 below shows the maximum and minimum accuracies as well as the values
of d and ρ that led to each accuracy. These results imply that, all things being

Table 1: Classification Performance of ESN when applied on
Extended Structural Tensor Feature Set.

Accuracy Reservoir Size(d) Spectral Radius(ρ)

Maximum 0.955488667 600 0.1

Minimum 0.955397455 400 0.3

equal, changes in spectral radius and reservoir size leads to a fairly significant
change in accuracy. The trend for the changes realized is depicted (in both 3D
and 2D format) in figure 2 below.It can be observed that, in most cases, an
increase in the value of ρ caused a slight corresponding improvement in classi-
fication accuracy. Besides, for each spectral radius, an increase in d leads to a
positive change in accuracy in virtually all cases. Hence the best accuracy, as
shown in table1, was attained with a spectral radius of 0.1 and reservoir size of
600. This confirms the observation of [2] about spectral radius in a similar study
where ESN was used for feature selection and MLP was used as readout for clas-
sification, and a spectral radius of 2.0 or less was proposed as the best choice for
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good quality colour image segmentation. Our finding for the best reservoir size
is, however, contrary to what was suggested in [2], as d > 400 rather appear to
be a good choice of reservoir dimension for a good image segmentation quality.
These findings served as motivation for further experiments to ascertain if classi-
fication accuracy can get any better when d is increased beyond 600 neurons and
ρ is decreased below 0.1. Therefore combinations of the following values of d and
ρ were tested: d = 700, 800, 900, 1000 and ρ = 0.01, 0.03, 0.05, 0.09. As depicted
in figure 3 below, a steady increase in accuracy was realized as d increases. The
effect of ρ, however, became unpredictable and did not have as much effect as
d. Based on this, we selected 0.9565224 attained with d = 1000 and ρ = 0.01 as

(a) (b)

Fig. 2: Effect of a range of d and ρ on the Accuracy of Tensor-based Image
Classification using ESN. d ranges from 150 - 600 and ρ ranges from 0.1 - 0.99.

the best performance of ESN for color image segmentation as far as this study
is concerned.

4.1 Comparing ESN and other Techniques

Table 2 below shows the best performance of ESN obtained through the exper-
iments explained above; the accuracy of SVM when applied on the same EST
feature set; and the results obtained in related studies using other approaches.

It can be seen that the segmentation accuracy of ESN is relatively better than
the average performance of SVM as far as this study is concerned. Although our
tensor-based approach did not involve any form of feature selection, as was done
in some related studies (e.g. [2, 11]), the performance of ESN was promising. This
demonstrates the resilience of ESN to redundant and noised data. It is also worth
mentioning that in [3], the accuracy was estimated over each image dataset; the
pixels used for training were also used for testing. But this study took a different
approach in order to test the ability of ESN to classify unseen pixels and also to
make the model insusceptible to over-fitting: pixels used for testing were different
from those used for training. When compared to the classification result attained
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(a) (b)

Fig. 3: Effect of a range of d and ρ on the Accuracy of Tensor-based Image
Classification using ESN. d ranges from 700 - 1000 and ρ ranges from 0.01 -
0.099.

by the tensor-based method proposed in [11], it can be concluded that the result
of approximating the reservoir outputs using a Tucker decomposition may be
similar to that of using raw reservoir outputs based on EST feature set.

Table 2: Comparison of ESN to SVM and some existing State of
the Art Classifiers.

Algorithm Accuracy Dataset

ESN 0.9565224 All images combined*
SVM 0.86106 All images combined*
Random Tree(RT) [3] 0.9322 ’326038’*
MLP [3] 0.9938 ’35058’*
MLP [2] 0.926 SSDS dataset [2]

*’35058’,’41033’,’66053’,’69040’,’134052’,’161062’,’326038’

5 Conclusions and Future Work

In this paper, we have investigated the usefulness of ESN for color image segmen-
tation when applied on Extended Structural Tensor features. We also explored
the effect of the two main parameters of Echo State Network (ESN): spectral
radius and reservoir size on image segmentation accuracy, and we compared
our result to related state of the art methods. From our experiments, it can be
inferred that both the reservoir size and spectral radius have fairly significant
effects on pixel classification accuracy. After an initial set of experiments with
reservoir size ranging from 150 to 600 and spectral radius ranging from 0.1 to
0.99, the best choice of spectral radius and reservoir size were 0.1 and 600 neurons
respectively. Further tests with ρ < 0.1 and d > 600 led to further improvement
in accuracy. Based on this, 0.9565224 attained with d = 1000 and ρ = 0.01
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was chosen as the best performance of ESN for color image segmentation as far
as this study is concerned Tensor-based segmentation accuracy using ESN was
comparatively better than SVM, and showed promising results when compared
with recent state-of-the-art segmentation approaches. However, in future work,
we plan to analyze the accuracy of other types of ESN models, and we expect to
apply the NN and Structural Tensor feature set refined through various feature
selection processes.
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